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0 Gross structure of the program TWOFNR

The program TWOFNR is the extended version of the program TWOSTP to cal-
culate the finite-range form factor. This version includes all the functions of the program
TWOSTP.

MAIN ( SKIP, CLEB, RAC, U9)

MIX BASIC FFGENZ FFTAPE FFGENF ELAST AMPCLA AMPCLB XSECTN
XSECTN INPUTA INPUTB INPUTC ELXSEC OVLAPA OQOVLAPA OUTPUT
PLOT SIGMA  FFSUB1 FFACT BLOCK  BLOCK  PLOT
COULFN FFSUB4 LEGEND OVLAPB OVLAPB
COUNEG FFSUB6 GAUSS  LEGD LEGD LEGD
PGEN2  BESSEL BOUND INTE2 INTE2  INTE2
WRITEA FFSUB7 FXGEN FNSG2 FNSG2  FNSG2
FNLOC CLEBZ
WRITEB GK2GEN
GBESSE
GKGEN
INTPOL
WRITEC

Segment BASIC

reads the kinematical data, optical potential parameters and scattering angles and pre-
pares Coulomb phase shift, Coulomb wave function and optical potential forms.
Subroutine MIX

reads the data of mixing factors of the scattering amplitudes, reads the sacattering ampli-
tudes from the file, sums up coherently and calculates the cross section and polarization
observables.

Segment FFGENZ

reads the data of the zero-range form factor and prepares the zero-range form factor,
the correction factors for the nonlocality of the optical potentials and the finite-range
correction factor for the zero-range form factor.

Subroutine FFTAPE

reads the finite-range form factor from the permanent file.

Segment FFGENF

reads the data of the finite-range form factor and prepares the finite-range form factor.
Segment ELAST

calculates the elastic scattering amplitudes, cross sections and polalizations.

Segment AMPCLA

calculates the DWBA overlap-integrals and the scattering amplitudes.

Subroutine AMPCLB

is the non spin-orbit version of the subroutine AMPCLA. When all of the optical potentials
do not include the spin-orbit coupling, the flow goes through this routine.




Segment XSECTN

calculates the cross section and polarization observables, prints those and plots the cross
section.

The files used in the program

I/O number type of file use
) standard input unit
6 standard output unit
7 card punch
8 sequential permanent file storage of scattering amplitudes

Following files are used in the case of finite-range form factor

1 sequential scratch file storage of gg(ra,m)

2 direct access scratch file  storage of first-step form factor

3 direct access scratch file  storage of second or one-step form factor
12 sequential permanent file storage of first-step form factor

13 sequential permanent file storage of second or one-step form factor



TWOSTP
1 Instructions for the Input Data

This program has two subroutines, which read input data.
INPUTA ; for Basic Data,
INPUTB ; for Form Factor Data,

........................

........................

form factor data(2)

form factor data(l)
/ one data set

T basic data /

T title card

One data set for one run consists of a set of “basic data” and some sets of “form factor
data”. Fach set of basic data and form factor data is terminated by a blank card.



1.1 Basic Data

1.1.1 Title card

FORMAT(10I1,3I2,I4,15A4)

input variable | meaning
KTOUT (1) Output of F;"*™*(¢) =0; none =1; prints,
=2; punches, =3; prints and punches, =4; prints and writes on file,
=5; writes on file =6; writes 4" (6) on file,
=9; goes to the subroutine MIX.
KTQUT(2) prints overlap integral =0; no, =1; yes.
KTOUT (3) prints distorted wave of incident channel =0; no, =1; yes.
KTOUT (4) prints distorted wave of exit channel =0; no, =1; yes.
KTOUT (5) prints distorted wave of intermediate channel (1) =0; no, =1; yes.
KTOUT (6) prints distorted wave of intermediate channel (2) =0; no, =1; yes.
KTOUT (7) plots cross section =0; no, =1; yes.
KTOUT (8) prints elastic cross section =0; no, =1; yes.
KTQOUT(9) is not used.
KTOUT (10) is not used.
INS ID number to identify (), which is written on file.
NUMRUN (1) Month.
NUMRUN(2) | Day.
NUMRUN (3) Year.
ITITOL(I) Title to identify the run.
I=1,15

1.1.2 Numerical Data

Most of the numerical data are read in with FORMAT(8F10.5). Integer numbers are
also read in with the same FORMAT and converted to integer numbers in the program.
Except for special cases, the first number of each input card identifies the group of data.
The first decimal space of this number, which is indicated by “0”, identifies the channel,
1; incident channel,

2 ; exit channel,
3; intermediate channel (1),
4 ; intermediate channel (2).

Hereafter one frame, which includes seven data at most corresponds to one input card
( one data group). Only the “numerical data” cards relevant to the run should be read
in. When several runs are sequentially continued, the “numerical data” card, which is
exactly the same as that of the run just before, needs not be read in.



FORMAT(8F10.5)

1.0
NUBCHN Number of intermediate channels. (NUBCHN < 2)
RMAX Upper cut-off radius of the radial integrals.  (fm)

NRMIN Mesh point number of lower cut-off. R, = ArxNRMIN
NRMAX Number of mesh points, Ar =RMAX/NRMAX. (NRMAX< 200)
ELABI Laboratory energy of incident projectile. (MeV)

2.0
TRS(1,0) | s; ; Spin transfer of the first step.

LTR(1,0) [l; ; Orbital angular momentum transfer of the first step.
TRJ(1,0) | 7; ; Total spin transfer of the first step.

TRS(2,0) | s9 ; Spin transfer of the second step.

LTR(2,0) |l ; Orbital angular momentum transfer of the second step.
TRJ(2,0) | jo ; Total spin transfer in the second step.

TTRJ j ; Total transferred angular momentum of the reaction.

For one-step process O = 2. For the two-step process going through the intermediate
channel (1), O = 3. For the two-step process going through the intermediate channel
(2), O =4. (The same for BETA(DO) on the next card.) For one-step process the default
for TTRJ is TRJ(1,0).

3.0
LMIND(O) | Lower cut-off of partial wave.

LMAXD(O) | Maximum partial wave. (LMAXD(O) < 80)
BETA(O) | Mixing factor of the process. If zero this process is not calculated.
PNLOC(O) | B ; Nonlocality parameter of the distorted wave.

4.0
PMAS(O) |m, ; Projectile mass.

TMAS(O) | My ; Target mass.

PZ(0O) zp ; Projectile charge number.

TZ(O) Zr ; Target charge number.

PSPN(O) | s, ; Projectile spin.

TSPN(O) | Iy ; Target spin.

QVLUE(O) | @ ; Q-value relative to the incident channel.

If any radius parameter r, is positive, the radius is given by R, = r, X M%/ 3, and if it is
negative, the radius is given by R, = |r,| x (My/* + ml/?)



5.0

vD(O) V' ; Real well depth of the optical potential.

wD(O) W ; Imaginary well depth.

vsoD(O) |V, ; Real well depth of spin-orbit term.

WwsoD(O) | Wy, ; Imaginary well depth of spin-orbit term.

RRD(O) ro ; Real well radius parameter.

ARD(O) a, ; Real well diffuseness parameter.

RCD(O) r. ; Coulomb charge radius parameter.

6.0

RSORD(O) | 7y, ; Real well radius parameter of spin-orbit term.
ASORD(O) | ay, ; Real well diffuseness parameter of spin-orbit term.
RSOID(O) |7y ; Imaginary well radius parameter of spin-orbit term.
ASOID(O) | ay; ; Imaginary well diffuseness parameter of spin-orbit term.

The form of the surface imaginary well is the first derivative of Woods-Saxon form, if
ry = ag = 0 in the next card, otherwise it is Gaussian form.

7.0
CSDGD(O) | U,y ; Mixing factor of volume and surface imaginary well.
RID(O) r; ; Imaginary well radius parameter.
AID(O) a; ; Imaginary well diffuseness parameter.
RGD(O) rq ; Gaussian type imaginary well radius parameter.
AGD(O) ay ; Gaussian type imaginary well range parameter.
8.0
KTISP(O) | Two figures integer for control of isospin term,

tens (units) digit for real (imaginary) well,

=0; none, =1; volume type, =2; surface type.
VISD(O) |V, ; Real well depth of isospin term.
RISRD(O) | 7 ; Real well radius parameter of isospin term.
AISRD(O) | a;s ; Real well diffuseness parameter of isospin term.
WwIsSD(O) | Wi, ; Imaginary well depth of isospin term.
RISID(O) | 7 ; Imaginary well radius parameter of isospin term.
AISID(O) | a;s ; Imaginary well diffuseness parameter of isospin term.




Form of Optical Potential

U= — {VfB®) +iW D)}
h 1d )
m C>2;% Vio s(f)(r) + W g)(r)} l-s

— Vit P )+ W f D)} T -7

2
1 (3—T>ZZ62 r < R,

+ 2(

+ { 2R \7 R
%zZe2 r > R,
1
() = 1 +exp[(r — Rr)/a,]

. - 1 exp|(r — Ry)/a;]
fc( )(7“) = (1-Cs) T+ expl(r — By)Jad +4Cq {1+ exp[(r — Ri)/a}?
or = (1-Cu) epr:_ ]+ Cuexp{=l(r = Re)/ag]")

R _ 1
fs(o )(T) 1 +exp|(r — Rsr)/as]

; _ 1
fs(o)(r) 1 +exp|(r — Rsp)/as]

9 = 1

1+ exp[(r — Risr)/aisr]
Risr  exp[(r — Rrsgr)/@isr]
aisr {1+ exp[(r — Risr)/aisr] }2
ey — 1
fis (T) o 1+ exp[(r — R[S[)/aisi]
Rrsi exp[(r — Risr)/aisi)
aisi {1+ exp[(r — Rrsr)/aisi] }2
where for any x

or =

or =

R — rmer}/?’ ifr, >0
* Ira| x (M + ml/3) if r, <0.
9.0
JMAX Number of angles. (JMAX < 73)

DTHETA Af;Angle increment. If AG=0, next cards(angles) should follow.
THETAD(1) | 0, ; First angle.

THETAD (J) | Angles. (Center of Mass System)
J=1,JMAX

A blank card will terminate the basic data.

blank card




1.2 Form Factor Data

One must input necessary number of data sets for the form factors in definite order.
(The form factor data for the step of BETA(O)=0.0 must not be read in.)
Order;
1 One-step process.
First-step  of the two-step process going through the intermediate channel(
Second-step of the two-step process going through the intermediate channel(
First-step  of the two-step process going through the intermediate channel(
(

1).
1).
2).
Second-step of the two-step process going through the intermediate channel(2)

Ot W N

In some cases, a coherent sum of form factors must be used, for example in two-nucleon
transfer or microscopic inelastic excitation. If KTFF(4) in the next card is not zero, the
program will attempt to read in following form factor data and add coherently to the
previous ones, until a KTFF(4)=0 is detected which indicates the last set for this step.
The data cards, which include only the same data as the data set just before, need not
be read in.

FORMAT (8F10.5)

10.00
AMP a;s; ; Spectroscopic amplitude.
KTFF (4) | Superposition control of form factor, =0; last case, =1; to be continued.
D02 D3 ; Zero-range constant for transfer reaction.
KTFF(5) | Output control of form factor. =0; no, =1; prints
=2; punches, =3; prints and punches.
FTS 7 ; Isospin transfer.
TA T4 ; Target isospin of the prior channel.
TB Tg ; Target isospin of the post channel.

Default for AMP=0.0 and D02=0.0 are AMP=1.0 and D02=1.018x10* respectively.

10.01
FNRNG | R ; Finite-range parameter.




Collective form factor (FFSUB1)

10.11
KTFF(2) | Control integer of real part. 0 ~ 11.

FREAD(1) |V}

FREAD(2) |7 R, =1, x M/®, if 7, > 0
FREAD(3) | aq R, = |r.| x (My* +mlf3), it r, <0
FREAD(4) |7,

FREAD(5) |7

10.12
KTFF(3) | Control integer of imaginary part. 0 ~ 10.

FREAD(6) | W,

FREAD(7) |7, R, =ry x My/?, if 7, >0
FREAD(8) |a; Ry = |ry| x (My? +mlf3), if r, <0
FREAD(9) |7,

FREAD (10)| b,

FREAD (11)| Cyq

In the case z, # 2, for example (p,n) or (*He,t) reaction process, the Lane potential

is assumed, and the strength is multiplied by the factor /274/2M,, and further if the
transferred [ = 0, the strength is multiplied by a factor V4w, because Y = 1/v/4n.



Options available for collective excitation form factor

a

Real Part
KTFF (2)
0 fPr) =0
RoVi
1 B0 = 2200+ G(r)
RyVy r
2 SO0 = SRR AN G
RoVi
3 0 = =200
RV r
4 (R) _ 0V0 ' ¢(R)
f(r) " R0f1 (r)
5 f0) = —alVopm
RyVy r
6 JO0) = A= 2 k00
R2V,
TP = SRR
RVy(7r [a
8 fB) — 00{[ (R)
9 fBE) = Vi)
10 f00) = 4P
11 B0 = Vogs™(r)
where
_ 3zZa€® [ RLrY >R,
Cl(r) - 2l+1 { rl/Rlc+1 r S Rc
=0 r < Re
324 Za4€® 432 2,74
BSUBL = 20+1 20+1
@) = [+ exp(Xg) AP(r)
2
By _ 4 (m)
) = e h ), 95" (r)
XR:T'—RO T’0><M/11—v/3

10

: Ry =
" {\r0|><(M%/3+m;/3) ro <0

+ 5 1800}

d (R
dX5 fo (7")

exp[—X7]

o >0



Imaginary Part

where

KTFF(3)
0 fI90) =0
RiW,
L 00 = - G () - 4Cus" ()]
RiW, ReW,
2 fO0) = = (1= Cu) f”<r>+%csdg§“<r>
7 g
R W,
3 00) = S0 Ca) g i) — 4Cu I <>}
R W, r R W
) — Yo oD GVVo (I)
100 = SR Ca) e i)+ RI (r)
R2W,
50 [0 = 0 [0 G r) — 40l (r)]
R2W, RZW,
6 SO0 = Tt - Ca) D)+ =5 Clug (1)
7 g
R2W, r [a
1) = R [+ )
_ R IO RAIG)
4C'stI {lez (7‘)+RI 3 ]}
R:W, r [ a; r
(I) . 7YYo . o i (1) (I
800 = T Cag [+ )
REWo . 1 [by (1) T
+ b2 CstI [RI 1 (T)+R192 (r)
9 fOr) = Wol(l-Cu)fs"(r) = 4Cuaf{"(r)]
10 /D) = Wol(1=Cu)fs"(r) + Cuags (r)]
') = [1+exp<x N g (r) = exp[-X¢]
d
1) = dXIfo ), 0 = )
d? d?
1) = dX?fo (), ') = e ()
fél)(r) = diX?fo (7’)
X] _ ’/’—R[’ XG:T—RG
a; b
oo re X My/? ry >0
T \rx]x(Ml/?’—l—ml/‘g) e <0

11



Single-particle transfer form factor(FFSUB4)

10.41

IREAD(1)
IREAD(2)
FREAD (1)
FREAD(2)
FREAD(3)
FREAD (4)
FREAD(5)

N ; Number of nodes excluding the origin and infinity.
zZ, ; Charge product of bound particle and core.

E ; Binding energy (MeV; must be positive).

m ; Mass of bound particle.

M ; Mass of core.

AM ( =0, in usual case.)

AZ (=0, in usual case.)

10.42
FREAD (6)
FREAD(7)
FREAD(8)
FREAD (9)
FREAD (23)

R():TO X M1/3
Rc =Ten X M1/3

ro ; Well radius parameter.

ren 3 Coulomb charge radius parameter.
a, ; Well diffuseness.

Vison ; Depth of the spin-orbit well.

0 ; Nonlocality range parameter.

External form factor Reads in the real part of form factor with FORMAT (8F10.5)

10.51

FF(I)
I=1,NRMAX

Real part of form factor.

Reads in the imaginary part of form factor with FORMAT (8F10.5)

10.52

FFI(I)
I=1,NRMAX

Imaginary part of form factor.

Reads in the real part of form factor with FORMAT which is read in.

10.53

(5E15.8) | «— Example. Any FORMAT, ending in column up to 60.
FF(I) Real part of form factor.

I=1,NRMAX

Reads in the imaginary part of form factor with FORMAT which is read in.

10.54

(5E15.8) |«— Example. Any FORMAT, ending in column up to 60.
FFI(I) Imaginary part of form factor.

I=1,NRMAX

12




Microscopic inelastic excitation form factor (FFSUB6)

10.61
IREAD(3)

FREAD(10)
FREAD(11)

type of interaction,

=0; Gaussian,

=1; Yukawa,

=2; OPEP tensor,

=3; r2x Yukawa tensor,
=4; Delta, V' x d(r)
=5; Coulomb, Za€% )7
V ; Interaction strength. (MeV)

1 ; Range parameter.

V x exp(—pur?)

V' x exp(—pr)/pr

V x h(QI)(ZMT) 512

V x r¥exp(—pur)/ur Sia

10.62
FREAD(2)
FREAD (3)

m ; Mass of bound particle.
M ; Mass of core.

10.63

FREAD(1)
IREAD(1)
IREAD(4)
FREAD (12)
IREAD(2)
FREAD (4)
FREAD(5)

B, ; Binding energy (must be positive).
N; ; Number of nodes.

l; ; Orbital angular momentum.

Ji ; Total angular momentum.

(zZ); ; Charge product.

AM; ( =0, in usual case.)

AZ; ( =0, in usual case.)

for initial state.

10.64
FREAD (6)
FREAD(7)
FREAD(8)
FREAD (9)

ro; ; Well radius parameter.

re; ; Coulomb charge radius parameter.
a; ; Well diffuseness parameter.

Vioi ; Depth of the spin-orbit well.

for initial satate

10.65

FREAD (13)
IREAD(5)
IREAD(6)
FREAD (14)
IREAD(10)
FREAD(15)
FREAD (16)

B,.r ; Binding energy (must be positive).
Ny ; Number of nodes.

Ly ; Orbital angular momentum.

Jf ; Total angular momentum.

(zZ)s ; Charge product.

AM;y (=0, in usual case.)

AZ; (=0, in usual case.)

for final state.

10.66
FREAD (17)
FREAD(18)
FREAD (19)
FREAD (20)

rof ; Well radius parameter.

res ; Coulomb charge radius parameter.
ay ; Well diffuseness parameter.

Vsor; Depth of the spin-orbit well.

for final state.

13




Microscopic two-nucleon transfer form factor. (FFSUB7)

10.71
FREAD (10)
FREAD(11)

k ; Range parameter of t (*He) or a wave function.

1 ; Range parameter of deuteron wave function.

10.72
FREAD (2)
FREAD (3)

m ; Mass of bound particle.
M ; Mass of core.

10.73

FREAD (1)
IREAD(1)
IREAD(4)
FREAD(12)
IREAD(2)
FREAD (4)
FREAD(5)

B, ; Binding energy (must be positive).
N; ; Number of nodes.

[ ; Orbital angular momentum.

J1 ; Total angular momentum.

(zZ); ; Charge product.

AM; (=0, in usual case.)

AZy (=0, in usual case.)

for particle 1.

10.74
FREAD(6)
FREAD(7)
FREAD(8)
FREAD (9)

ro1 ; Well radius parameter.

re1 ; Coulomb charge radius parameter.
ay ; Well diffuseness parameter.

Vio1; Depth of the spin-orbit well.

for particle 1.

10.75

FREAD (13)
IREAD(5)
IREAD(6)
FREAD(14)
IREAD(10)
FREAD (15)
FREAD (16)

B,z ; Binding energy (must be positive).
N5 ; Number of nodes.

ly ; Orbital angular momentum.

J2 ; Total angular momentum.

(zZ)s ; Charge product.

AM; (=0, in usual case.)

AZs (=0, in usual case.)

for particle 2.

10.76

FREAD(17)
FREAD (18)
FREAD (19)
FREAD (20)

roo ; Well radius parameter.

reo ; Coulomb charge radius parameter.
as ; Well diffuseness parameter.

Vio2; Depth of the spin-orbit well.

for particle 2.

A blank card will terminate to read the form factor data.

blank card

14



1.3 Subroutine MIX

This routine calculates the differential cross section and polarization observables after
coherently summing the scattering amplitude over the various processes.

B () = 3 an B (0)
N

do 10 1 kb 2[3 + 1 2
do Ko BMmyma (g
dQY 1672 Ecn, Ecm, ko (25, +1)(204 + 1) mﬂ%;mb | )

The scattering amplitudes ™™ (f) can be stored on the permanent file. This pro-
cedure is controlled by the control integer KTOUT(1) (the first data on the “title card”).
Each scattering amplitude is stored on I/O unit 8 with the identification number ( =NUM-
RUN(5) ). The starting number of NUMRUN(5) equals 1 or INS (in the case INS # 0)

and is increased with the increment one as the run goes in succession.

1.3.1 Input data for the subroutine MIX

FORMAT(10I1,------ )

9 ( title card )

FORMAT (3F10.5)

( MIX card )

N ID-number of the scattering amplitude.

If N is a negative number, the run goes immediately to the
read-statement of the “title card” for the next run of TWOSTP.
AR Real part of the factor ay

AT Imaginary part of the ay

A blank card terminates the summation of the scattering amplitudes and calculates
the cross section.

blank card

Then the run goes back to the read-statement of the “MIX card” for the next run.

If one wants to append the scattering amplitude on the permanent file, which already
exist, one should read the final scattering amplitude on that file by subroutine MIX and
after that go back to input routine of the TWOSTP.

15



Sample input data for this case.

9 (title card)
N. 1.
blank card
—1.
Beveens INS - - (title card)

The data of the run of TWOSTP

The INS must be N-+1.

16



2 General description of TWOSTP

The computer program TWOSTP calculates the scattering differential cross section
for general form of the distorted wave Born approximation up to second order. Namely,
one-step and two-step processes of the reaction can be calculated. The incoming and
outgoing wave may be in any combination of spin 0, spin 1/2 or spin 1 particles. The
calculations are performed in a zero-range form factor between the coordinates of prior
and post channel waves.

The angular momentum algebra used in this program is almost close to that of Satchler

1].

2.1 Unit system in the program

Length ; fermi ( 107" cm )

Mass ; proton mass unit

Energy ;. MeV

Cross Section ; mb/sr.

Angle ; degree (in the center of mass coordinate system)

2.2 Notations

final intermediate initial Channel.
my Moy, m; Mass of projectile.
AT MmN\, Ar;  Integration step size.
f mj

Transferred angular momentum.

lf lg lm ll lz

Sf S Sm S1 Si Angular momentum of partial wave
JfJ2 Jm Ui
2 1
of 0} ol Om o, o0; z-component of projectile spin.
Iy I, I; Spin of target.
My M,, M; z-component of target spin.
| Total transferred angular momentum.

2.3 DWBA up to Second Order

The differential cross section is defined in terms of the transition amplitude 7T,

do _ jupy Ky 1 2
i L T
e (2nh®)2 k; (21,4 1)(2s; + 1) Miz\%;naf .

17



The transition amplitude of the distorted wave up to second-order Born approximation
has the form
T = Tone + Z TTtnwo

where the summation is taken over intermediate channels.
Tone = <kf; [fo, SfO'f’V’ki; [MZ, SiUi>
_ Z /dr /drfxa (g ) (1 Mys 0| VI LM isiof)xG), (ki)

II maai
= Z\/2j+1 jMMf M’[fo) l;[] lsgff (kf7kl)7

lsj

Ttwo  — (kf;]fo,stfWQ (+)V1|kz';—7'Mz'7Sz‘0i>

= JiJ /drz/drm/dr /drfxg o (kg ry)

Mma 1Om0y, 0 f
< (It My 10| Vol ln Min$m0 ) G5t (¥, Tn) (L My 8100 | Vi i Mis:077)
><;(£j:3 (l(i7 ri)

/ I I ymyroso;
= Z 2j + 1 jM Mf M ‘[fo Z Al151j1 leSQJQﬁ ljistl (kf7 kZ)?

l1s131 272
l2s272

Z(+) and ng) are the distorted waves, r; and ry are the reaction channel coordi-

where y
nates for the initial and final channels respectively and G is the distorted wave Green
function of the intermediate channel, r,, and r/ are the reaction channel coordinates for
intermediate channel and J, J; and J, are the Jacobian of the coordinate transformation
of the form factor from the natural coordinates to the reaction channel coordinates. In
the presence of any spin-orbit coupling the distorted wave may be written by a partial

wave expansion

4
X'Enm(k r) = k;ir > (LsMm|JM + m)(LsM +m —m/m/|JM + m)
" gLm

ity (kr)Y M (k) Y M= (1)
The partial waves are solutions of the Schrodinger equation

[diJer L(L+1)

d7’2 77_2 h2 (U + U + UL)]XLJ(]CT) =0

with x7s(0) = 0. For large r, beyond the range of the nuclear potentials, radial waves
have the form

A—— .
xe(kr) = [HE (kr) = Hy? (kr)] exp(ior),

where Hg) = G +iFy is the outgoing-wave Coulomb function, and 17 is the reflection
coefficient for the (L,J) wave. The 7/ are obtained by matching the function and its
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derivative to the solution of the Schrodinger equation. U is the central optical potential, U,
the Coulomb potential and U7 the spin-orbit potential for the (L,J) wave. The reciprocity
relation is

X (1) = ()" X, ().

The distorted wave Green function has the form in the presence of spin-orbit coupling

Gt

m m(rlv I‘) =

o 1
e S (LsMm|JM + m)(LsM +m — mni/| JM +m)
JLM

i exp(—iop)xrs (kr< YHYD (ke ) Y (R) Y™ (3)

where H(LJ}) is the irregular solution which is computed by matching the function and its
derivative to the outgoing wave Coulomb function ng) at large r and integrating inward
the Schrodinger equation. The total minus sign is omitted in this expression, because the
attractive potentials have positive value strength in definition of this program. In the case
that the kinetic energy of the propagating particle in the intermediate channel is negative,
the wave number is imaginary and the Coulomb function is replaced by the corresponding
Coulomb function.

The remaining factors in the transition amplitudes are the matrix elements of the
interaction causing the reaction, taken between the internal states of colliding pairs in

each step of the reaction processes

(IsMg, s500|V|IaMa, 5004) / R R AL e

where & represents all the coordinates independent of r, and r,. This factor contains
all the information on nuclear structure, angular momentum selection rules and even
the type of reaction being considered (whether stripping, knock-on or inelastic scattering
etc.). This matrix element can be expanded into terms which correspond to the transfer
to the nucleus of a definite angular momenta 1, s and j (14 s =j).

J<]BMB7SbO'b|V|IAMA,Sa0'a>
= Zfl )P (LajMa, Mp — Ma|IpMp) (545504, —0p|50, — 03)

lsj
x(lsm, 04 — oy|jMp — Ma)A[E" fij(ra, 1)
where m = Mg — My + o, — 0, and AIB 4 is the spectroscopic amplitude.
In this program the so-called “zero- range” approximation is introduced for simplicity
of numerical calculations. The form factor can then be written

zero m /2 MA
fi (1) = Figg(ra) Y™ (8a)5(xs — 3/ ¥a):
B
The one-step and two-step transition amplitudes, by using the zero-range approxima-
tion for the form factor, may be written as follows if the z-axis is chosen along k; and the
y-axis along k; x ky.
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One-Step Process

Bzr;jfafaz() _ (_)mf+j+l+3ffsiﬁl;;nf,—af,—Ui(0)

(ly —my)!

_ Li—ly—1 f Uf 7 pmy g

%Z lf—l—mf) s ()

tyig

ly sy Jy

<\ JAm (2l + 122 + D)(2s + DRI+ D)L+ 1) | s
L si Ji

x(lysp —myg,opliy —my + op)(lisi00i]jio)
(lfl00|l 0)<jf] — mf + O'f, Mf — M‘jzdz)

/le]f k‘f77 -F'ZSJ(DT)XZMI(I{?“T)CZT

where “00” depends on the type of reaction process.
Two-Step Process

A (0) = ()RS T (6)
25272 25272
|
_ Z jli=ly—h—l (Ly —my)! lef<9)
o (g +mpt
lm]m
Lyif
X(_)]1+]2_]
><\/ 2j + 1 (2[ + 1)(2jf + 1)(2lf + 1)2(282 + 1)(2l2 + 1)(2j2 + 1)
<\ (2l + 1)(2m + 1)2(251 + 1)(20 + 1)(241 + 1)(2; + 1)
lf Sf ]f lm Sm jm
X ly 52 Jo L si 5
lm Sm jm lz S; ]z
XW (d:g17 7925 Gmd)W (LigiLsd2; Imj)
X(ysy —my,opljy —my+op)(lisi0oi|jioi)
X (L51200[1,0) (I 1100\1'0)(ij —my + oy, My — Mi|jio;)

my

//lejf kf? — )~Fl232j2(Dr )G(+ (W;TI Er)Flzszh(DT)

X X1, (i, r)dr’ dr

2.4 Cross sections and polarization

The differential cross section for unpolarized projectiles and target nuclei is given by

Jmyfogo;
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mfafo'l Ip1; mfo'fai If]m me'fO',L
ZAlsj lsj (‘9)+ Z Ahsl]l lQSz]Qﬁ 1151]1( )
l1s141
M 1gs952

where E¢p’s are the energy of the relative motion in the center of mass coordinates of
the initial and final channels.

The vector polarization P of the emitted particle is defined as the expectation value
(sf)/sy. Only the component of P; perpendicular to the reaction plane (this is along
k; x ky) is nonvanishing, if the incident beam is unpolarized.

V(sp—ap)(sy+op +1)Sm[B] 77 ()BT (9)]
BT (9)]2

Zj,mfofai

Py(0) =

Sf Z] myo o

The vector polarization P; = (s;)/s; can be written

myfo§o; mys—1,0p,0;—1%
S jmposo \ (5i — 03) (i + 05 + 1)Sm[ B} 77 (0) B M7 (9)]
BT 6

J

P(6) =

Si Zjvmfo'fdi

2.5 Models of the reaction process

2.5.1 Inelastic scattering

If we neglect the exchange of the scattered particle with one in the nucleus and as-
sume that the interaction is local, then the “zero-range” condition r, = r; is satisfied
automatically.

The interaction may be expanded in multipoles, each term being a scalar product

V<r7U>§)ZZ(_)j_MWSJM( g)Tlsj M( 0')

lsj,u

Tisju(®,0) =D _(Ism, i — mj )Y, (8)8s u-m(0)

m

Hereafter we use the Wigner-Eckart theorem of the form

1
sV 1 _ o ‘ L,
(Joma|Vim|jima) 72j2+1(J1Jm1M|J2m2)(J2|| illg1)

1
V@Ip+1)(25+1)

Ay Frgj(r) = (=)° (L5 Vil 1) (sallo [ 50)

where
s =0; o® =1, (sallo@]50) = V254 + 1

s=1; o) =g, (s4lleM]54) = \/sa(sa +1)(284 + 1)
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In the case s = 0 (spin-independent interaction),
Tiom(7) = 'Y (2)
V(&) = > Via(r, QLY (&)

Im
25, +1
2l + 1

(The factor v/2s, + 1 is already taken into account in the program.)

Alﬂ(r)

(Ls[[Vi(r; §)[[14)

2.5.1.1 Collective rotational model

We assume that the potential is non-spherical and it only depends on the distance
from the surface and then allow this surface to have the following non-spherical form

U=U(r—R(,¢)),

R0, ¢ oll — Z o ’“"| + Z V(0. ¢')] = Ry + OR.

where the polar angle (6, ¢') is referred to the body-fixed principal axes of the nucleus.
A Taylor-series expansion about R = Ry yields

d d?
Uir—R) = U(T—Ro)—éRaU(T—R(]) (5R) = U(T—R())
= vO_LyO L y@ o
where
SR = Ro[>" an (0, ) — S 12l |O"“q|
kq kq

Other choice of the deformation is that the equi-potential surface is parallel with the
nuclear surface [2].

2
R(0',¢') = Ro[1 =Y ’Oifq’ +3 R, Y0, &) = Ry + OR.
kq i kq
_ q(g |oqu|
o= o[l + ) Y0, =D
kq kq

U = Ulrg) =U(r[1+ ; |Ozlk7qr| — ;aqukq(H’, ¢")])

/ / d
= U(r) — Zaqukq(G N0 )rd—U
kq r

+> kYO, ) Ir —dU+l 2 & Ul +
o kqtk A7 dr 2 dr? ’
B r d 219 " d r? d?
= U()—(SRE%U (5R)[R0d U—l—Rf(Q)@U]%—-”,
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We must rotate into a space-fixed coordinate system, using

Y0, Z Y (0,0)Dk (R

where R is the rotation taking the body-fixed axes into coincidence with the space-fixed
axes.

Vi = [VOLY (0,910 =~y Dyn(R)aty Ro—-U(r = Ro)
q

where the following relations were used.

al:,q = (_)qaky—fb D(’;’,q(R_l) = D5,2’<R) ( )q I Dliq —q' (R)
Ve = ZD R) " [akgau pug” @R DN FL) g 0~ glip)
Im & kqWk u—q 47T(2l + 1) q, qitp

2

d
X (kk’OO|lO)R§WU(r — Ry)
These have a common form '
-y
o
The wave functions for an asymmetric rotor are written
Qorv = Z Afdrim

1 J2I+1

OkIM = In 1+5K0{D§<,M(R)XK+(_)I+KD£K7M(R)X—K}

Then the reduced matrix element is written as

BIp|V]als) = > A% Ai (Kplp||V||Kala)
B

KaKp

214 +1
Kplp||\V||Kala) =
(KBIp||V|Kala) \/(1—|—§KA0)(1+5KBO)

X [(IalK A, Kp = KalIgKp)Viscy—1c, + (=) (Ial = Ka, Kp + KalIKp)Vik, i,

For even target nuclei we have I, = K4, =0 and Ig =,

(4)
GUIVON00) = 3 A [V,

In the axially aymmetric case, with Kz = 0 only,

(BIVO|a0) = Vi
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2.5.1.2 Collective vibrational model

The model adopted here is the same as for rotations, namely, a nonspherical potential
well oscillates about a spherical mean. This is achieved by treating the deformation
parameters oy, as dynamical variables

hw . .
Uy = ’“{bkq + ()5} = (=)0,

where the b}, (big) is the usual boson creation ( annihilation ) operators for a 2*-pole
oscillation with angular momentum k and z-component q. The energy of a phonon is hiwy,
and C}, is the restoring-force parameter.

d
v = —ilag Ro— VO
o iy Gt DEK D,
‘/Em - kk, OOl m— q \l 47?(2l+1) ( q,m Q| m)

d2
kk'00]10)R2—V(©
x( 10) Rg 72

In the case of even target nuclei, which has zero spin, the wave function of various
vibrational states are presented as follows
(i) no-phonon (ground) state |0)
(ii) one-phonon state |1; IM) = b},,]0)

(iii) two-phonon state

1
Z(kkIQ7 _q‘IM) kq k/M q’0>

2, IM) = ——
PIM) = S

2.5.1.3 Microscopic inelastic excitation

The form factor of a single particle excitation by a central or tensor force between a
nucleon in the projectile and a nucleon in the target nucleus is given

Fc’,c = <IBMB> Sbmb’ Z ‘/;j‘IAMAa Sa7/na>

ij

where |I,M,, s4mq)’s are the initial wave function of colliding pair and the summation i
runs over the nucleon in the projectile and j runs over the nucleon in the target nucleus.
The interaction has the form

Vij = Z |I“z —r;|)(o; ol U§S))(T§t) . T§~t)); central force

or = Z Yl - rj‘)(Tz('t) : T§~t))5ij : tensor force
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where s and ¢ are the spin and isospin transfer to the nucleus. The o® and 7 are the
spin and isospin operators,

The S;; is the tensor operator

5, = 3(oi-r)(o; 1) —(os-0y) = %;T

S (lo: x o) - YO (@)

where r =r; —r;.
The multipole expansion of the spatial part of the interaction is given for the central
force

VC ‘I‘z I']‘ Zvl (s0) 7"177"3 Ym*(f‘i)yim(f‘j%

v

and for the tensor force

20 + 1)(2; + 1
Vs = el oy i DY)

x(zizjoo|20)[ YL, (8:) x Vi, (87)]5

The common form of the multipole expansion of the central (k=0) and tensor (k=2)
force interaction is given

a.(s) ONORSON o » |
( ( ()J )(('t)l)sijvj(r))‘/( ) } — A(k) /28+1 Z ill—lj(_)s—]—‘y—o'—‘,-y

Lilj,gm,on

/(20 + 1)(2L; + 1) (LL;00[k0) W (Lilyss; kj) (Ismoju)

Z_ll}/l:n*(ri) () (t)ﬂs]t ,LLV(TJ7 0-§ )7 gt))

where
Tisjtgun (r, 0, 70) = 3" (Ism, p1 — mljp)i' V" (r)o )

m

and
A(0) =1, A(2) = —V2.

The matrix element of the projectile system is given

(sym; tov| LT [ 50mm; talia)

1
- (s6tb]|C*|[ sata)
V@s+1)(2t+ 1)
1
X (SaSMa, —0|spmp) (tatva, —v|tels)

\/(2sb +1)(2t + 1)

<o GIl).
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where the operator C*' is defined as follows

st .
Cal/ -

2s+1)(2t +1 1 1 1 1
\/( st )5( + )C;Vl(25010|202)(2tV11/]2V2)
11, 11
xCét, C22

—01—V 11
= > ()" 1(5502, 01\80)(§§V2,—V1!t1/)

We introduce the creation olperator C237" associated with the Os-state in the projectile
and annihilation operator C'22 is the Hermitian conjugate of the creation operator. If we
modify the annihilation operator as follows

M\»—\

~1 1 11
C3? = (—)ovezz .,

these C22% and C'27 are the components of the spherical tensor of rank 1/2 in both spin
and isospin space.
The matrix element of the target nucleus is given in the n-p representation

<IBMB |ﬂsjt;uV‘IAMA>

1 .
=2 S UellAs G vam) )
Jij2

1 . 11 1 1
X (L1 Map| I M) (Stv1v| 5 v2) (2| Toss 3 GG 17911 5)
2(2Ip + 1) 22 2 2

where the operator of the single particle excitation has the form

. 2741 .. )
Aju(agisern) = 21 > (Grgmapljoms)al,,, (va)ajim, (1)
mi

= Z(_)jl_ml (j2j1m27 —my |j,u)a;;m2 (VQ)G’]'NM (Vl)

= (—)*a},(v2) x a;, ()]}

Here we introduce the creation operator a;rm

associated with the state |jm) and the
annihilation operator aj,, that is the Hermitian conjugate of the creation operator a;“m.

If we modify the annihilation operator as follows

jm = (=) " j—m
these ajm and a;,, are components of the spherical tensors of rank j.

The final result of the form factor is given

1
Foe = Z (SbthCStHSata)

1s§,1'j1J2 \/(28 +1)(2t+1)
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1
Xi
VT

—m 1 1
X (—)* b(tatlja,—l/‘tbl/b)<§tljll/‘§l/2)

Ig||Aj(jagr; varn)||1a)

2020+ 1)(27 + 1)(21 + 1)(22 + 1)(20; + 1)
7T(2[B + 1)
x (=) st = (1700| k0) W (I ss; k) (11100]120)

ly J2
X ll
l/

J1 } /%jz () Rur (1, )00, 3, (re)rifdry
J
The spectroscopic amplitude which must be input is
as; = (the spectroscopic amplitude of the projectile system)
X (the spectroscopic amplitude of the target system).

x4rA(k)(2s + 1)(2" + 1)J

» NN =

The spectroscopic amplitude of the Os-projectile system
1
V@s+1)(2t+ 1)

(nJT||C*|nJ'T")

1,1 1,1
—_ _\s+t I (A eh T*T/*' T
X W ) WST T

X (nJT||CH||n — 1T”)(n — 1T ||C||nJ'T")
1,1

1,1
Z WIS 557 s) W(TST 53 T71)

J'T
X (=) AT [0 1) (20 + 1)(2T + 1)(2T + 1)
x(nJT{|n — 11"} (n — 1J"T"[}nJ'T")

n=1 n=2 ‘ n=3 ‘ n=4 ‘
reaction | (p,p’),(p,n) | (d,d’) (h,h"),(t,t") | (o, &)
(n’n/)7(n’p) (h7t)’(t7h)
(s=0,t=0) 1 V3 3 2
(s=1,t=0)| 1 V2 1 0
(s=0,t=1) 1 0 1 0
(s=1,t=1) 1 0 -1 0
The spectroscopic amplitude of the target system in the n-p representation
1 . n m
\/m( n2+1<‘]2> I 1(J1)7 ‘],”Aj(JZJH 020-1)”]22(‘]2)]11(‘]1); ‘])
JyoJp g
RIT DIV B D Ty G Bl 157 G Rl 57 )
J2 v ]
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_ (_)n1+n2+J1+J1—j1—J1 \/nl(n2 + 1)(2] + 1)(2J1 + 1)(2J§ + 1)(2J —+ 1)(2J’ + 1)

g
xq Jy STy (52 Je), gl basE T ) G (L), | bart )
J2 1 J

The phase convention of the shell model amplitude in this program

(1) The coupling order of the 1 and s is 1 +s = j.
(2) The radial wave function of a single particle is positive near the origin.

(3) The spherical harmonics has the time reversal phase i, then i'Y;™.

Mutipole expansions of the central and tensor forces are given as follows
Gaussian interaction

exp(—pr?) = exp[—u(ri +r3)JAm 3 Bi(2prira) Y™ (1) Y™ ()

lm

Yukawa interaction

expl—ur A o
p(MTu) — 47TZB[(MT<)Hl(MT>)Y2m*(T1)YZ (7”2)
lm
Delta interaction
(T) 17 %ﬂ: ( ) ( )

Coulomb interaction

*—4 Z RE T +1 Y ()Y (72)

OPEP tensor interaction

WY i)Yy (r) = —Var Y. z‘“?\/ L+ 1L+ 1) (111500|20)

Il 5
1l2
Bll (Nr1>Hl2 (NT2) Ty <T2
A @) _0(ri =) _
x[%l (711) X Y22 (TQ)]m u37"17’2 1 T2

Hy, (pry) Bry (pre)  r1 > 1o

28



r2x Yukawa tensor interaction

7 Py = iy DR G 0j00) v, () Vi)

HT Ll 5
X [T%BZQ(NT<)H12<NT>) —aryre By (pur<) Hy (prs) + TgBll(/"LT<)Hl1(MT>)]
2 12:l1i2andl/:llil
2l +3
a = ﬁ 12:l1andl/:l1—1

%gijr% =1, and I =1, + 1

where )
Bi(p) = (=i)'ju(ip) and Hy(p) = ~i'hi" (ip)
and jj, hl(l) are the spherical Bessel and the first kind spherical Hankel functions.

2.5.2 Transfer Reaction
2.5.2.1 Stripping Reaction

The internal wave functions of the colliding pairs are given

Mr(r € ea) = Y (LaiMapllpMp)®) (€4)Q0Y " (x,€)

Jud g1 M 41

QfA’“(r, §) = > (lsm,p—m|jp) T (B; Alj)uy (r)i'Y,™ (7)gh~™ (&)

lsm

Z;a (rbxa fxa €b) = Z(Sbsmba M’Sama>j(a; bx)¢b:r (rbx)¢g (5) Zzb (51))

s

We assume that the transferred particle is the s-state in the projectile and use the zero-
range approximation

_ ma
%z(rbz)(lﬁbx(rbx) ~ Doé(rbw) - DOJ 15(1'[, - mira)
B
where J is the Jacobian of the transformation from the “natural” variables r,4 and rp,
to the r, and r; used for the distorted waves
mqemp 3
J = [—F———|°.
My (Mg +ma)
This approximation has the physical meaning that particle b is emitted at the same point
where particle a is absorbed.
Then the nuclear matrix element is given

J<[BMB7Sbmb’V’[AMA, Sama>
=i (=) (Iag M, Mp — MalIgMp)(SaSpma, —my|sm, — my)

lsj
A , 254+ 1
X (lsm, mq —mp|jMp — Ma)s(lsj)a(s) 25+ 1 Dy
*x (A - ma .
X Fyj(ra) Y™ (70)0(fy — — 1),
mp
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s(lsj) = v/nJ (B; Alj), a(s) = Vvj(a; bx),

where s and a are the spectroscopic amplitudes of the target and projectile system, respec-
tively. The factor y/n and /v arise from antisymmetry considerations. n is the number
of equivalent nucleons in the orbit {5 of the heavier nucleus B and v is the number of the
same particles in the projectile a as the transfer particle.

2.5.2.2  Pick-up Reaction

The internal wave functions of the colliding pairs are given

(68 = Y (IB/jMB'MIAMA)CDK?/(fB)Q}L‘B,’“(IZf)

julgr Mgy

Qj‘B’“(r, §) = Z(lsm, w—m|jipn) T (A; Blj)ulj(r)ilylm(fwl;_m(f)

lsm

sp (ra:mg:wga) = Z(Sasmaaﬂ‘sbmb)j(b§&x>¢aac(rax>¢g(€) ZZ”(&)

s

Then the nuclear matrix element is given

J<IBMB, Sbmb|V|]AMA, sama>
=il (=)* " (IgiMp, Ma — Mp|IaMa)(sp8amp, —mg|smy, — mg)

lsj
. i 281,"‘1
l — My |iMs— M l
X (Lsm,my — mg|jMa B)s(lsj)a(s) 2s+1 0
A m ~
5 Fy (1) Y™ ()8 (7 — —2 1)
ma

_ Ia+j—IB+sp+s—sa (2]14 + 1)(28 + 1)
=2.(-) J (215 + 1)(252 +1)

xi (=) (14§ Mg, Mp — Ma|IgMp)(Sasyma, —my|sma — my)

lsj

‘ ) 2s,+1
X (lsm,mg —mp|jMp — M4)s(lsj)a(s) 95+ 10
A ~ m A
X F (1) Y,™ (75)0 (7 — 737“1;)7
ma

s(lsj) = vnJ (A; Blj), a(s) = Vvj(b; ax),

where n is the number of equivalent nucleons in the orbit /7 of the heavier nucleus A and
v is the number of the same particles in the projectile b as the transfer particle.

In this program, only a;; = s(lsj) X a(s) and D3 may be input for both stripping
and pick-up case. About the spectroscopic factors one can see, for example, the article
by Macfarlane and French [4].

30



2.5.2.3 Bound state wave function

The bound state function is the solution of the Schrédinger equation,

R d? U+ 1)

[_7 - _

} = B+ U (r) = 0

24 dr? r2
U(T) = _‘/E)fO(r) + ‘/;Ofso(r)l -8+ fc(T)
_ 1 _ /
L T
h 1d
fso(7) (m C)Q;afO(?")
Z 2 2
fy—{ G TSk
%ZZGZ r> R,

In the potential depth search procedure, only the central force strength is searched and
the strength of spin-orbit potential is fixed. The number of nodes is counted excluding
the origin and infinity. The convention of phase is that the sign of radial wave function
is always positive near the origin.

2.5.2.4 Values of D?

For the (d,p) or (p,d) reaction the wave function of deuteron obeys the following
Schrodinger equation

R h?
_ % _ = 2= 2.22MeV
{ 2/,l/dv + (r)}wd(r) Ewd(r)’ € 2/,Lda €
hz 2 2
Do = / V(r)(r)de =5 - / (V2 — a2)ihy(r)dr.
Yukawa type
— 2
b= ,/;e”q)(o”), D2 = 5T 1018 x 104 MeV
m T (6%

Hulthen type

Va = ;ﬁ((;fg)a o) - (=) e 87;?‘2 (& ; 515 153 x 10°MeV 2’

where ((~ 7«) is obtained from the n-p scattering and effective range theory.
For other reactions following values are often used.

Reaction D2 [10*MeV?*fm?]

(*He,d)  4.42
(t,d) 5.06
(a,d) (24 ~ 46)
(a,t) (24 ~ 46)
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2.5.2.5 Two-nucleon transfer reaction

The microscopic two-nucleon transfer form factor is calculated by Bayman-Kallio
method [5]. In the case of (t,p) reaction the internal wave functions of the colliding

pairs are given

. M’ /
YIE (Ea, w1, T0) = Z([A]MAMHBMB)(DIAA(gA)q)f;? (21, 22)

M)
@f;‘(xl, To) = > (Ism, p— m|jp) Z T P4 iy, nalogia; i)
z o
L 3 5
<21+ 1) 2s + D271 + D)2+ 14 I T g
Il s g

y [¢ll (I’l) X ¢l2 (r2)];n + (_)1+S+t Wll (r2) X ¢l2 (rl)];nX/sL;mW (,rh’ n2)55+t71
\/2(1 + 5n1n25l1l25j1j2)

where
m,v

Xod (mmz) = [xa 1 (m) X xa 1 (m)]3y
We introduce relative and center of mass coorinates defined by

ry +ro
2 )

r=r; —Is and R =

and expand into the form

[0 (r1) X P (02)]" + [V (12) X Y (01" _ = a1 o 3 \|m
\/2(1 + 5”1”125l1125j1j2) B g,; rR [YA( ) X YA(R>]1

If we assume A\ = 0, with the aid of Bayman-Kallio method

|4 (=)ot (20 + 1)(2l5 + 1)
! _
fol(rv R) - 2 2(2[ + 1)(1 + (5n1n26l1l25j1j2>

1
wr R /_ () (72) (200110l (01 6)
+2 3 (Lilym, —m[l0)d}}, o(61)d2,, o(6))dx,

m>0
1 R—irg
where ry = \/R2 +-r2 — Rrx, cos(f)) = —2—,
4 T1
1 R+ irz
re = \/R2 + 17"2 + Rrz, cos(fy) = —2—.
T2

We assume that the projectile system has the Os-state radial wave function

(&, 1, T2) = Y (spsmy, Mg — My |samy) (tot V), Ve — Vy|SaVa)

Sasta
i
2y

<JU(s G (m)Xer T ()@, 71, 72)
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and
¢(rp,m1,7m2) = Nzexp[— Z r; —r;)°

2k

= N exp{—fs?(;r? b2l Ne= B
T
We introduce the following zero-range approximation
m
[Vip(t1s) + Vap(ra)]d(rs, T1,12) 2 do(r)d(p) = T~ do(r)d(ry — #ra)
B

where J is the Jacobian of the coordinate transformation and most simple form of dy(r)
is given
3 29
do(r) = DoN3 exp(—ifi )

The nuclear matrix element is then given

J<IBA4BSanJVW[AAIASQWIQ>
= > (=)™ (IajMa, Mp — Ma|IpMp)(saSsma, —1mp|sma — my)

lsj
X (Lsm,mg — my|ljMa — MB)"lYm*(A )
X Z JPA nll1]1,n212]273t>l bt

nylygy
nalajo

L5 7
x\/(2l +1)(25 + 1)(251 + 1)(242 + 1) { L 5 Jo
[l s g

!
X /do(r)Wdrd(rb — @ra)

mp

The radial part of the form factor is given

Fug(r) = [ dofr) 20 g

r

3 gl (—)atlt (20, + 1)(2ly + 1)
— N A (2 2\—3/2
VAT 2 2@+ {1+ Smabndrors)
(&%) +1
></0 exp(—X?)X? /4 g, (71) Uiy, (r2) [(111200[10) dgr o (61)d o (62)
+2 > (lilam, —m|lO)d£§L’O(01)dlEm’0(6’2)]dx dx

m>0

The Dy value is given as follows in the cluster model with Gaussian interactions. The
cluster wave function and interaction are defined

o) = () exp(-2r2%), V(p) = 2V exp(~50%).
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Then the D§ value is

45>

c_ 3/2 3/4
Df = [ 6le)V () = 2V (55" ) ()"
The dy(r) is given using this DS value
3
do(r) = N3 exp(—§H2r2)/exp( p*)2Vo exp(—32p”)dp
3 T 3

_ 3/2 2,2\ _ nC 3/4 (272
= QVO(m) / Ngexp(—im ) = Dg (4 5)*/* N3 exp(— 5" r?)

For the zero-range constant the above D§ 2(4%{2)3/ 2 value must be input.

If more refined treatment about the interaction is used [6]
Vip(rin) = Voexp(—3ry,)
3
d(r) = Vols [expl-n’ (O +2) ] exp[~ (37 + 1)

x[exp(—G%r - p) + exp(6°r - p)ldp
T 3/9 3 4 6k*+4/5°
= Wlga ) el R G

2
Following values must be input for the zero-range constant, the range parameter and the
normalization constant of triton(or *He) particle

6K2 + 452 6K2 + 33
D2 — De2 T \3/2 K — N — 3/2 )\

In the case of (a,d) reaction the projectile wave functions must be changed as follows

)r’]

o = Ngexp[— Z = N, exp|—r?(2r% + 2" + 4p?)]
¢a = Naexp(— 7727“'2)
2
N, = 23/4(% )/, N, = (ﬂ)SM'
7r 7r

We introduce the zero-range approximation

m
/¢a[V13(7’13) + Via(r1a) + Vas(ras) + Vaa(ras)]dadr’ = do(r)d(p) = J do(r)d(ry — migra)
In this program the do(r) has the most simple form
i 3/2 2.2

do(r) = NaNd(m) /% exp(—2K27?)

The Dy value of the cluster model with Gaussian interaction is given
8k?2 Q2
Dg = /(7)3/4 exp(—4 )4V0 exp(— 3 z)dp 4%(m)3/2(7)3/4
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The dy(r) is given using the D§ value

do(r) = /N exp[—r?(2r? +2T'2+4p )]4Vy exp(—32p?) Ny exp(—n*r'"?)dr’ dp
7r

_ C
_D<82

)3/4]\7 Ny( )3/2 exp(—2x%r?)

22+ﬁ2

For the zero-range constant the above D§ 2(#)3/ 2 value must be input.

2.5.2.6 Spectroscopic amplitude of projectile system

We assume all nucleons of the projectile system are in Os-state.
One-nucleon transfer reaction

reaction (Tb%I/bV|Tal/a) N <nb(sb7'b);s% |}naSaTa)  spectrosco. amp.

(d,p) —1/v2 V2 1 =1

(d.n) 1/V2 NG 1 — 41

(h,d) 1 V3 —1/v/2 =—/3/2

(t,d) 1 V3 1/v/2 = —/3/2

(a,h) —1/V2 V4 1 =2

(at) 1/v/2 V4 1 = +v2
Two-nucleon transfer reaction

reaction (ToTVV | TaVa) (”2“) (np(sp7p); St | }naSaTa)  spectrosco. amp.

(t.p) ~1/\/2/3 V3 ~1/V2 — +1

(Mp)(s=04=1)  —1/V3 V3 ~1/V2 —1/v2

(h,p)(s=1,t=0) 1 V3 1/v/2 =\/3/2

(h,n) 2/3 V3 —1/V2 =1

(t,n)(s=0,t=1) 1/vV3 V3 —1/V2 = —1/V2

(t.0)(5=1,4=0) 1 V3 1/v2 — 32

(a,d) 1 V6 ~1/v2 =3

2.5.2.7 Integration step size of the form factor

In this program the step size of integration for each channel is fixed on the basis of
initial channel. In the case of reading the external form factors, one must be careful
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about the choise of the step size of the form factor. The step size of the form factor and
normalization factor of integration of overlap integral for each step are shown below,
one-step process

process step size factor
myr

stripping Ar;
pick-up i Ny ()2

my myg
two-step process
first-step step size factor second-step step size  factor
stripping Ar; %”? stripping ;r? VAV WV’;Lf 7772} 2
ick i A, m 2 ick ﬁ&. iy, 1l
pick-up A (mm) pick-up mp T Ty g

2.6 Local energy Approximation

2.6.1 Non-locality correction

The non-locality of the distorted wave and/or bound state wave function can be cor-
rected for approximately by introducing form factor corrections. The non-locality has
the effect on the wave function in the nuclear interior; the wave function for non-local
potential is reduced inside the nucleus compared to that for a local potential which gives
the same scattering. This reduction can be well represented by a damping factor obtained
from the local energy approximation [8]. This factor is of the form

37 2p;
8 h?

H(r) = exp] Vi(r)]

where [3;’s are the non-locality parameters, the p;’s are the reduced masses and the V;’s
are the equivalent local potentials for each of projectiles and bound state particle. In the
case of a bound state the factor H is multiplied on the bound state wave function and then
the function is renormalized to unity. In this program the V; do not include the spin-orbit
part of the optical potential for the projectile but include all of central, spin-orbit and
Coulomb potential for the bound state particles. Typical values of § parameter are

particle B(fm)

p 0.85

d 0.54

3He 0.2 ~ 0.5
o 0.2

2.6.2 Finite-range correction

The zero-range approximation tends to overestimate the contributions from the nuclear
interior. The local energy approximation yields a simple radial correction factor for the
form factor of zero-range approximation [8].
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For the stripping reaction, a(b4+x) + A — b + B(A+x), one can write the transition
amplitude as

/dR/er (R + 1)t (R (R + L)

Mg

where D(r) is the overlap function between a and b,
D(I‘) = D(rbx) - %x(rbx)¢bw(rbx)-

If we define
G(K) = /exp(iK -r)D(r)dr

the zero-range normalization is given by Dy = G(0) and the finite range correction pa-
rameter R is given
1 0G(K?)
G(K?) O(K?) oy
The first order correction factor with the aid of the local energy approximation for

D(r) is

R = -

H(r)=[1+Am]" Hulthén form D (r) = D(I)LI4 1R2 exp(—T/R)’
™ r
H(r) = exp[—A(r)] Gaussian form  D%(r) = DOG<4 R2)3/2 exp[—(r/R)]
s
and
2 mpymy

A(r) = R*[Ey — Vi(ry) + By — Vi(ra) — Ey + Va(r4)]

B2 my
where E, V and m are the energy, potential and mass of each light particle.

A positive FNRNG will select the Hulthén form of H(r) and a negative FNRNG will
select the Gaussdian form of H(r). Typical values of R parameter are

reaction R(fm)

(p,d) 0.621 ~ 0.695
(*Hed)  0.770

(t,d) 0.845

(a*He) 0.7
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TWOFNR
1 Difference from the program TWOSTP

This program is the finite-range form factor version of the program TWOSTP. Here
the differences from the code TWOSTP for the input data and the matters to be attended
are pointed out.

(1) The number of the intermediate channel is limited up to one.

(2) If the finite-range form factors are used, one can not calculate both one-step and
two-step processes simultaneouly. One must calculate separately and sum up the
amplitudes by the aid of the subroutine MIX.

(3) The modification of card 1.0 basic data card.

1.0
NUBCHN | number of intermediate channels. (NUBCHN < 1)
RMAX
NRMIN
NRMAX |number of mesh points.  Ar = %& ,  (NRMAX < 100)
ELABI
KTZF (1)| control integer of the first-step form factor.

=0; zero-range form factor, =1; finite-range form factor,

=2; same as former case, =3; reads in from permanent file,
=4; writes on the permanent file.

KTZF (2)| same control integer of the second step.

1.1

MESH |distorted waves are calculated with mesh Ar/MESH,
but overlap integrals are calculated with Ar .
(NRMAXxMESH < 300)

In the case to calculate the nonorthogonality term the optical potential strength
VD(O) and WD(O) (in card 5.0) of the intermediate channel must be negative. In
this case d-function is used instead of Green function.
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2 Input Data for finite-range form factor

2.1 Control Data

FORMAT (1012)
KTRL(1) | Type of the wave function for the system 1.
=0; depth search, =1; binding energy search,
from the next, the wave function with the analytic form
=2; Gaussian Ng exp|[—(r/a)?]
=3; Yukawa Ny exp(—a/r)
=4; Hulthen Npylexp(—ar) — exp(—p0r)]/r
=5; two-Gaussian ay exp[—(r/a)?] + By exp[—(r/5)?]
=6; constant =WREAD(1)
=7; local-Gaussian Ngr exp[—((r — a)/8)?]
KTRL(2) |type of the binding potential for the system 1.
If KTRL(2) > 4 the wave function is multiplied by the searched
binding potential. (U,; nuclear part, U.; Coulomb part)
0 1 2 3 o(m)
4 6 8 10 ¢(7“1) X Un(Tl)
5 7 9 11 o(r) x (U, +U,)
Woods-Saxon Gaussian  Yukawa  Hulthén
Woods-Saxon potential Vi x [1 + exp((r — R)/a)]™!
Gaussian potential Vi X exp|—(r/a)?]
Yukawa potential Vi X exp(—ayr)/r
Hulthen potential Vi x exp(—pr)/[exp(—aqr) — exp(—[0ir)]
KTRL(3) |same control integer for the system 2 as KTRL(1).
If KTRL(3)=6 the wave function has the constant value
( =WREAD(8) ).
KTRL(4) |same control integer for the system 2 as KTRL(2).
KTRL(5) |type of the reaction interaction
=0; constant=1.0, =1; not used
=2; Gaussian, Vo x exp[—(r/€)?]
=3; Yukawa, Vo x exp(—¢r)/r
=4; Woods-Saxon, Vo x [1 +exp((r — Rp)/&)]™!
=5; Local-Gaussian, Vo x exp[—((r — Rp)/&)?]
KTRL(6) |type of the reaction
=0; stripping or pick-up reaction
=1; exchange or knock-out reaction
=3; other type of reaction
KTRL(7) |is not used.
KTRL(8) | calculates the nonorthogonality form factor with the
operator method, =0; no, =1; yes.
KTRL(9) |prints out 2-dimensional radial form factors every
n-th point =0; no, =n; yes.
KTRL (10)| prints out bound state wave functions for the
system 1 and 2, =0; no, =1; yes.
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2.2 Numerical Data

FORMAT (8F10.5)

1.0
AMP a;s5; spectroscopic amplitude.
NRANGE | number of mesh points of 7, (NRANGE < 30)
| ji’ ro — NRANGEAT, < 1y <| ? | 7o + NRANGEA7,
NAFAC facgtor by which the original mesh Size of r, is reduced
after interpolation is made.
NBFAC same factor for ry.
KAPG maximum number of k for gx(rq,7s)
=0, program calculates this number.
=K naz, puts this number.
2.0

quantum numbers of the bound particles.

IREAD(2) |n ; number of nodes

IREAD(3) |l ; orbital angular momentum. for the system 1.
IREAD(4) |7, ; total angular momentum.

IREAD(5) | ng ; number of nodes

IREAD(6) |l ; orbital angular momentum. for the system 2.
IREAD(7) | 7jo ; total angular momentum.

IREAD(8) | s, ; spin of the transferred particle.

3.0
FREAD(1) |V} ; strength of the reaction interaction.
FREAD(2) | & ; range parameter of the reaction interaction.
1 ; binding energy or

Vi ; depth of binding potential
€9 ; binding energy or

Va5 depth of binding potential

FREAD(3) } for the system 1.

FREAD (4) } for the system 2.

4.0
Factor of coordinate transformation,

r, = s;r, + tirb'
FREAD(15)|s;  If KTRL(6)=0 or 1 and
FREAD(16)|t; FREAD(16)=FREAD(17)=FREAD(18)=0.0
FREAD(17)| so  s’s and t’s are calculated in the program.
FREAD(18)|t,  If KTRL(6)=0 and FREAD(15)=1.0, r3 =1, or
FREAD(19)|s3  If KTRL(6)=0 and FREAD(15)=2.0, r3 = rs.
FREAD(20)|t3  If KTRL(6)=1 and FREAD(15)=1.0 (2.0)
exact( approximate i.e., r, = r; and r, = ry)
calculation is made
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5.0

Binding potential parameters for the system 1.
WREAD(1) |[my or a
WREAD(2) | M or 3 for analytic form.
WREAD(3) | 2, Zcn
WREAD(4) | 701 or ay binding potential parameter.
WREAD(5) |ag or for non Woods-Saxon type.
WREAD(6) | Vi1
6.0

Binding potential parameters for the system 2.
WREAD(8) |my or a
WREAD(9) | Mco or 3 for analytic form.
WREAD (10)| 2, Zc
WREAD (11)| r¢2 or o binding potential parameter.
WREAD (12)| as or (3, for non Woods-Saxon type.
WREAD (13)| V02
7.0
WREAD(15)| Rp ; radius of the Woods-Saxon or local-Gaussian

reaction interaction.

WREAD (16)| s4
WREAD (17)| t4

The case to read the bound state wave function of the system O.

8.0

DRX(O) Ar ; step size of the bound state wave function of system O.
KT if KT> 0, uses the same wave function just as the run before.
(5E15.8) |example FORMAT card.

FFR(I,O) | Bound state wave function for the system O.

I=1,400 |if DRX(D) =0.0 Ar= 1'522%\“)(

A blank card will terminate to read form factor data.

blank card
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3 Description of TWOFNR

This program is the finite-range form factor version of the program TWOSTP.

3.1 Finite-range Form Factor

The matrix elements of interaction causing the reaction, taken between the internal
states of colliding pair in the step of reaction processes, can be expanded into terms
which correspond to the transfer to the nucleus of a definite angular momenta I, s and

j(l+s=7j),

(IpMp, sy04|V|IaM 4, 5404)
=i (=) (TajMa, Mp — Ma|IpMp) (845600, —0p| 504 — 03)

lsj

x(lsm, Oq — Ub|jMA - MB)Alsjflsj,m(rCH rb)?

where m = Mg — My + oy, — 0.
If we assume that the reaction is due to central interaction, form factor fis; ., (rq,rs)
has the common form, for all particle transfer, knock-on and inelastic scattering processes.

fisjm(Ta,Tp) = JZ (kinematical factors) llfmb(rl,rg),
llo
D(ryre) = > (lilymy, —mollm) Y, (7)Y, ™ (7)
mims
Xy, (11)V (rs)u, (r2),

where wuy, (r1) and w,(re) are the nuclear bound state wave functions, which have the
angular momentum [; and [y, respectively, and V' (r3) is the nuclear interaction. Here the
vector r; of system ¢ is represented by the linear combination of the channel vectors r,
and 1y,

r; = S;rq + t;1p.

J is the Jacobian for the transformation from the natural vector coordinate system
(r; , rg) to the channel vector coordinate system (r, , rp),

J = [Sltg — Sgtl]g.

This form factor transforms like ¥;* and can be expanded with the angular momenta
of the distorted waves of prior and post channels,

ll}lf 1'171'2 Z ll%lzlb 7“aﬂ”b
laly
X Y (Lalyma, —my[lm)Y"" (7)Y, ™" (7).
mMamy
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By inversion we have

Fi (14,13) / / 020y 1) S (lalyima, —mp|lm) Y™ (7)Y, ™ (7)drodry,

magMmy
The scalar radial part of the form factor can be expanded

2k+1

ug, (11)V (r3)ug, (r2) = Z

k

9k (Tas 16) Pr(p0)

where Pg(p) is the Legendre polynomial with the argument p = (7, - 7), which is the
cosine between the vectors r, and r,. Here, by inversion,

rars) = [, )V (r3)uas () P

The basic transformation used here is the one which converts the spherical harmonic
Y™ (7), where r = sr, + try, into spherical harmonics in r, and r, separately,

4r (2l +1
TlYim(fa) — Z \J ( )(Sra)l_)\<t7’b))‘
A\ 221\ 2

X (l — A\m — , M’lm>Y2T)TM(?QCL)Y/\N<7ﬁb)7

where A runs from 0 to [, and

is the binomial coefficient.
The final expression is given

1 201 + 1\ (2l + 1
Il o 1 2
F’l,l{flb <ra7 Tb) N 5 Z J ( 2A > ( 2A/ >

AN Ag Apk

X (5174)" " (597)"2 (tlrb) (tgrb))‘l
X (2k + 1)1/ (200 + 1)(20, + 1)(20 + 1)(2l + 1)(20; — 23 + 1)(21 — 2X + 1)
% (1,k00|Ag0) (I — Aly — N00|A,0)(I,k00| A0)(AN00|A40)

=X L=\ A,
X A N Ab

I L 1

X (_)la+lb+l+kW<ZaAaleb; kl)gk<rm Tb)‘
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3.2 Transfer Reaction

3.2.1 Stripping Reaction

A

The nuclear matrix element of the internal wave functions of the colliding pair is given
(IgMp, symp|V |IaMy, Sqmy) = /(IBMB]IAMA> (spmp|V (12)[sama)d &,

where &, denotes the internal coordinate of the transferred particle x and the post repre-
sentation is used. The overlap functions of the target and projectile system are

(IgMp|IsMy) = 3 S (LajMa, Mg — My|IpMg)

Blalisgj
l18gJ,m1mg

X (L sgmamg| i Mp — Ma)ug,;(r)i VY, (7)) (€,)
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(spmp|V (12)[sama) = Z Siflbzms(%smm Ma — Mp|SaMy)

l28z8,mamg

X (loszmamy|sm, — mb)V(m)ubs(rg)ibYl;T”Q(fg) e (g).

Sz

Then the final result is given

(IgMp, symp|V|IaM 4, sqmy)
1 2
= Z Z S§B)1Allszjs*galbl25z5

lsj lilasy

il (=) (20 4 1)(25 + 1) W(hajsiLs,)
X(_)srmbUA]'MA, Mp — MA|IBMB)<5a5bma7 _mb|5ma - mb)

. 23(1 + 1 Jo. l1jlas
X (Lsm,mg — myp|jMp — My) 25+ 1 it FER (),
where
DI (1) = g (llama, —ma|lmy — ma) Y™ (1) Yy, "2 (7a)

Xy (r1)V (r2)wys(r2).
The spectroscopic amplitude, which must be input, is

_ g 2

alsj — MIglglisyj™~ sasplaszys:

(kinematical factor) = il2_l1+l(—)5”_s\/(2l + 1)(2s + 1) W(lylags;ls,),

this kinematical factor is taken into account in subroutine FFGENF.
The factors s; and t; are given

meMmp mpymp
S1 = ) t = — )
mgzmr mymrm
meimna mqemp
S9 = ) t? = - )
mgmr mgmr

where mymyp = (mg — my) (Mg + ma4).
The interaction vector r3 depends upon the representation of the nuclear matrix element,

rs =Ty (s3 = S9,t3 = t3) for the post representation,
rs =r1; (s3 = s1,t3 =t1) for the prior representation.
Jacobian is
- [z
maymmrm
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3.2.2 Pick-up Reaction

B

The nuclear matrix element of the internal wave functions of the colliding pair is given

(I Mg, symp|V|IaMa, Sama) = /(]BMB|IAMA><sbmb|V(r2)|sama>d£x

where &, denotes the internal coordinate of the transferred particle x and the post repre-

sentation is used. The overlap functions of the target and projectile system are

(IsMp|IaMy) = 3 S (IpjMp, My — Mp|TsMy)

Ialglisg]
llswjvmlmw

X (lyszmamg|j My — Mp)uy, (Tl)ill}/}:nl(fl) e (&)

Sz

(spmp|V (r2)|sama) = Z Ss(fiabszs(sasma, My — Mg Spmy)
128z 8,mamy

X (losymomy|smy — ma)V(TQ)ulzs(7"2)2"’23/};”2*(722)1#

Sz
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Then the final result is given

(IgMp, symp|V|IaMa, sqmy)
1 2
= Z Z S§A)IBl13sz‘§bial25z5

lsj lilasy

xila =l ()5 [(20 4 1)(25 + 1) W (lilags; Us,)

(QIA + 1)(28b + 1)
(215 1 1)(250 1 1)

X (=)™ (I4jMa, Mg — Ma|IpMp)(SaSpma, —mp|$M0 — ™)

% (_)IA+j—IB+Sb+5—5a\J

2 a 1 . ilas
X (Lsm,mg — myp|jMp — My) 288 :—1 i 11%12 (r1,72),
where
W (r ) = > (lalamy, —mallmy — mo) Yy (1) Y, 2 ()

mima2

Xy, (11)V (12) U5 (72).

The spectroscopic amplitude, which must be input, is

(1) (2)

alsj = SIAIBhSzj sbsalgszs'

(kinematical factor) = z’lrll*l(—)s“”’s\/@l +1)(2s + 1) W(lylajs;lsy),

(214 +1)(2s + 1)
(205 + 1)(25, + 1)

(inversion factor) = (—)IA“_IBJ“S”S_S“J

these kinematical factor and inversion factor between the pick-up and stripping processes
are taken into account in subroutine FFGENEF.
The factors s; and t; are given

MeMma mpyma
81 = — , ty = )
myemmr myemmrm
mpm A mpmp
S9 = — , ty = )
mgmr mgmr

where m,mr = (my, — mg)(mg + ma).
The interaction vector r3 depends upon the representation of the nuclear matrix element,

rs =Ty (s3 = Sg,13 = t3) for the post representation,
rs =1, (s3 = s1,t3 =t1) for the prior representation.
Jacobian is .
mym
J— { b A]
mgmr
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3.2.3 Projectile wave function

Projectile wave function may be calculated in the program by specifying the analytical
form, KTRL(3)=2,-- - 7, or solving bound state wave function in some type of the poten-
tial. Geometric parameters of the spin-orbit potential is the same as that of Woods-Saxon
potential. Bound state wave function may be supplied externally. It has positive rise near
the origin. Zeros at the origin and infinity are not counted as number of nodes. One
can find more realistic wave functions for (p,d) and (d,t) reactions in the sample data,
where D-state mixture is taken into account. Interaction potential can be multiplied to
the projectile wave function just by controlling KTRL(4).

3.2.4 Nonorthogonality form factor including the operator

In the two-step process of the particle rearrangement reaction, the nonorthogonality
term, so called the “nonorthogonality-nonorthogonality” (hereafter named “non-non”)
term, appears if the projectile particle of the intermediate channel is lighter than the
projectile particles of both initial and final channel. The transition amplitude of “non-
non” term is given

Tnonfnon — _<X§:)¢f‘Tm + Um - Em’wmﬂwm‘w%XEH)

where 1’s are the internal wave functions of the colliding pair in each channel and T,,,
U, and E,, are the kinematical operator, the optical potential and the energy of rel-
ative motion for the projectile of the intermediate channel, respectively. This type of
nonorthogonality form factor, which includes the operator, can be calculated as follows

<wa‘Tm + Um - Emhﬂb)l,u = (Tm + Um - Em)<wa|¢b>l,u

where m is the intermediate channel, which equals a or b, and

(Walshin = D Fia, (ras ) [Ya, (7a) % Y3, ()]}

lalp

(Tm + Um - Em)<wa‘wb>l,,u
B2 1 0 0 L (L + 1
= Sl ) = M Untr) = B )

(7a) % Yo, ()]}

x[Y,

a

The second derivative in the above equation is calculated by the numerical differentiation
of the usual nonorthogonality form factor. In this program the sign of this form factor is
changed opposite because we assume that an attractive potential has the positive sign.
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3.3 Knock-out and Exchange Reaction

B

The initial and final state internal wave function of colliding pairs are given

2)
|IAMA7 Sama> = Z S§Alcsbl2j2

Iclaja,Mcma

X (LojaMe, Ma — M| TaMa)(lasyma, Mg — Me — ma|jaMa — Me)
XUgy, (72) Y2 (o )y Ma=Momma (g yma (&)W e (&1,),

(IpMp, symp| = Z 5(1)

Iglcsaliji
Icliji,Mcma

X(IcjiMe, Mp — Mo|IgMg)(lisami, Mp — Mc — my|j1Mp — M¢)
Xty g, ()i (7 ) Mo Memme (€ e (€,) U719 (&),

20



We assume that the interaction causing the reaction process is the central force

Vo= (@) ) (e~ )

a

o+T o 0)1(0 T
= ()20 +1)27r + Dol x o]V [ x 71 f(|r — 1))

where

o1



The final result is given

<IBMB, sbmb]V|]AMA, Sama>
_ Z g ) .
Iplcsaliji1™~1alcsplage
lsj,Iclijilzg2

x (—)lalern=d, [(21, 4 1)(21p + 1) W(Igjilajs; Ic)
X (=)%Y (545,855 08) (3al| 0 [|50) (6]l s || 55)

(=)W (E ot tyt; 78 (ol | 757 [0) (o745 6)

2t +1
x%il(tatm, vy — Va|tola) (tatVa, Uy — Va|to)
. : . Lo i
v QA+ D2+ DRI+ 1)2s+1)(25+1) ) )} Sa
. 2Ip + 1 la sp Jo
7 Il s g

X (=) (Laj Mo, Mg — MalIgMpg)(SaSpma, —mp|smg — myp)

x (lsm, mq — my|jMp — M) i~ fll,iflbh(rb r7),

where

(e ra) = D (hlyma, m— ma|lm) Y (7)Y ()

mi

Xy, j, (11)V (r2)ug,, (72).

The spectroscopic amplitude, which must be input, is composed of three parts
a;s; = (spectroscopic amplitude of the target system)
X (spectroscopic amplitude of the projectile system)
x (Clebsch-Gordan coefficients about the isospin).

For the target system

<@BIB"u(j)(j1,j2)|‘04A[A>
=Y aclo(=)a~Teth=d\ J(2L, + 1)(215 + 1) W (IgjiLajs; Ioj)
X (=)t ni{ng — 1, acle @ jiltniaplp)y/na(ne — 1, aclc : jo|ynocals)

where ) is the unit tensor operator

+

1o %}(j)

a .

J (5. 4.} — (272
Spectroscopic amplitude of the projectile system is
(=)W (sasasps; 08) (sallol [1sa) (svl| o 1 51)
X ()W (tatatyty; ) (tal 70 ) (Bl ).
Clebsch-Gordan coefficients about isospin are

2t+1

m(tatljh Vy — Va|tby2)(tat7/a7 Vp — Va|thb)
a

o2



The factors s; and t; are given

mamp mymp
S1 = 5 tl == )
mamp — Mgy mamp — Mgy
MeM A mampg
So = 5 tl - )
mamp — Mgy mamp — Mgy
's =TI; — I,
6o — MaAMp — Mgl A o — mamp — NMpMmp
3= 3= — .
MmaAmp — Mgy, mamp — Mgy,
Jacobian J is X
mamp
J =

mamp — Mgy
3.3.1 Nucleon exchange reaction

In the case of nucleon exchange process
Sazsb:ta:tbzl/Q,

then
1

Glo@ls) =y2@o 11, GIFOIg) = y2er+ 1)

Spectroscopic amplitude of projectile

(=)W (s0sas55; 05) (sall 07 | 50) (sllory” [150)

X ()T (tt atoty; 78 (tal | TS0 ) (757 1)

transferred (o,7)

s and t (0,0) (1,0) (0,1) (1,1)
0,0) 1 3 3 9
(1,0) 1 -1 3 -3
(0,1) 1 3 ~1 -3
(1,1) 1 1 ~1 1
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Isospin Clebsch-Gordan coefficients

2t+1
t=20 t=1

reaction neutron excitation proton excitation

(p.p) 1/2 —1/2 1/2

(n,n’) 1/2 1/2 —1/2

(p.n) 0 1 (p n~!) excitation

(n,p) 0 1 (n p~') excitation
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Sample Input

This test data consists of following six examples.

(1) logical test (output 15 pages)
(2) **Pb(p, p')
(2-1) macroscopic form factor, where inelastic scattering is induced by the first

derivative of the optical potentials (output 4 pages)

(2-2) microscopic form facter, where projectile proton interacts with the nucleon
in the nucleus via Yukawa interaction. Configuration mixing is exemplified.
(output 5 pages)

(2-3) microscopic form factor, with tensor interaction. (output 5 pages)

(2-4) proton inelastic scattering via (p,d)(d,p’) processes. zero range version. (out-
put 6-+6+6 pages)

(2-5) superpose some scattering amplitudes (output 2 pages)
(3) 2%Pb(p,d)

zero-range one-step calculation (output 4 pages)

finite-range one-step calculation (S-state contribution) (output 5 pages)

finite-range one-step calculation (D-state contribution) (output 4+4 pages)

~~ o~ —~ —~
P W o W w
C)‘(»JkOJ[\Db—k

-1)
-2)
-3) finite-range one-step calculation (D-state contribution) (output 5 pages)
-4)
-5)

superpose S-and D-state contributions. D-state contribution alone is also
calculated. (output 2+2 pages)

(4) 2%8Pb(d, t)
(4-1
(4-2) finite-range form factor (D-state contribution) (output 4 pages)
(4-3

(5) 2%Pb(p, t)

) finite-range form factor (S-state contribution) (output 4 pages)

) superpose S-and D-state contributions. (output 2 pages)

(5-1) zero-range (p,t) reaction with configuration mixing (output 5 pages)

(5-2) zero-range (p,d)(d,t) two-step calculation with configuration mixing (output
6+6+2 pages)

(5-3) finite-range (p,d)(d,t) two-step calculation (output 7 pages)

(6) 18Ca(*He, t)*8Sc (output 10 pages)
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Examples (3) to (5) are taken from the Ph.D work of late Dr. Igarashi. Example (6) is
recorded here to memorize the dawn of "two-step” work initiated by Dr. M. Toyama.

All the examples are tested on FACOM M780/20 computer with FORTRANT7 compiler.
Single precision option is used. Double precision option is advised if one is to use finite
range form factor with large orbital angular momentum transfer /.

Double precision option is realized by the following two procedures.
1) Insert double precision statement in each of the subprogram.

IMPLICIT DOUBLE PRECISION (A-H,0-Z) or
IMPLICIT REAL*8 (A-H,0-Z)

2) Replace OPEN statements for logical unit numbers 2 and 3 in the main program. old
lines

OPEN (2,ACCESS=’DIRECT’,RECL=10792)
OPEN (3,ACCESS=’DIRECT’ ,RECL=10792)

new lines

OPEN (2,ACCESS=’DIRECT’ ,RECL=21584)
OPEN (3,ACCESS="DIRECT’ ,RECL=21584)

These files are to store finite range form factor table ZFF(152,71).
Input FORMAT was modified a little in running these test data to make TSS operation
easier. They are, 1) INPUTA subroutine old line

2000 READ(5,3000) (A(I),I=1,8)

new lines

2000 DO 2001 I=1,8
2001 A(I)=0.0
READ(5,%*) A

2) INPUTB subroutine old line

3000 READ(5,3050,ERR=8000) A

new lines
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3000 DO 3001 I=1,8
3001 A(I)=0.0
RED(5,*,ERR=8000) A

3) INPUTC subroutine old line
500 READ(5,105) FPUT
new lines

500 DO 501 I=1,8
501 FPUT(I)=0.0
READ(5,*) FPUT

and
old lines

READ(5,110) FMAT

READ(5,FMAT) (FFR(I,J),I=1,NRMAXB)
new line

READ(5,*) (FFR(I,J),I=1,NRMAXB)

All the blank lines and comment lines which begin with letter 'C’ should be deleted before
use. The data "*.*" means that the data is not used for this special option.

You can replace *.* by any reasonable number.

Slash ’/’ tells end of a line. System 2 function tables for (d,p) and (d,t) reactions are
supplied in separate file. They include system 2 wave functions for non-orthogonality
term analysis.

1) logical test

This is the first data to be run on TWOSTP or TWOFNR. It consists of two types of
calculations. The first is the zero-range one step (p,d) reaction, while the second one
superposes one- and two-step calculations to get the same result as the first one.

Here are some explanations about this test input.

I-1 title card specifies to output overlap integrals and scattering amplitudes. Rest of the
contents is used for users convinience.

[-1.0 Minimum of NRMIN is NOT 0.0. Zero-range option is used.
[-2.2 2.1 card is not necessary.

I-3.1 No reference is made of BETA(1). It is advised to confirm the value of LMAX by
inspecting the convergence of overlap integral or cross section.
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[-4.1 Q-value is usally 0.0 for this channel.

[-9.0 External input of angle table.

[-10.51 External input of form factor. Specify 10.52 if imaginary part is to be input.
[1-1.0 NUBCHN=1 specifies two-step calculation.

11-3.3 BETA(3)=sqrt(4.0*3.14159265). Remember BETA(2)=1.0 is still valid.

I1-5.1 Notice VD(1) is 0.0 I This is the way to replace the old value. VD(1) is defined
as a form factor of the first step of the two-step calculation.

[1-10.0 You have to put three form factor data. The first is the one for one-step calcu-
lation. Second and third form factors are used in two-step calculation. Each form
factor set is terminated by a blank card.

—
[

TWO STEP TEST Pb(p,d)209Pb(1/2 +) One step

1.0 0.0 15.924 1.0 80.0 20.6 /
2.2 0.5 0.0 0.5 /
3.1 0.0 21.0 * .k /
3.2 0.0 21.0 1.0 /
4.1 1.0 210.0 1.0 82.0 0.5 0.0 0.0 /
4.2 2.0 209.0 1.0 82.0 1.0 0.5 -4.99 /
5.1 55.761 11.111 6.2 0.0 1.17 0.75 1.188 /
5.2 108.32 20.39 6.2 0.0 1.17 0.75 1.188 /
6.1 1.01 0.75 /
6.2 1.01 0.75 /
7.1 0.8351 1.32 0.6633 /
7.2 0.9922 1.29 0.6204 /
9.0 36.0 /
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5

60.0 62.5 65.0 67.5 70.0 75.0 80.0 85.0

90.0 95.0 100.0 105.0

0.0 /

C a blank or 0.0 card is a terminator for INPUTA

10.0 1.0 0.0 0.0 1.0 /
10.51 /

0.31821154E-1 0.29723987E-1 0.27463529E-1 0.24163958E-1 0.20426914E-1

o

.16290836E-1 0.11956777E-1 0.77774543E-2 0.37509301E-2 0.29648194E-3
.26918431E-2 -.48860898E-2 -.64322604E-2 -.71781641E-2 -.72665354E-2
.67369565E-2 -.57014283E-2 -.43495558E-2 -.27491353E-2 -.11597956E-2
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.39596471E-3
.34452779E-2
.83645619E-3
.43868786E-2
.41511338E-2
.26250365E-2
.14217070E-2
.73445973E-3
.37651137E-3
.19356931E-3
.99976998E-4
.51875002E-4

o

/
TWO STEP

1.0 15.924 1.0 80.0
0.0 0.0 0.0 0.5
0.0 21.0 3.54491

1.0 210.0 1.0 82.0
0.0 11.111 6.2 0.0
55.761 11.111 6.2 0.0
1.01 0.75
0.8351 1.32 0.6633

.16793404E-2
.29652244E-2
.18296340E-2
.45852726E-2
.38704053E-2
.23388844E-2
.12482374E-2
.64258697E-3
.32949349E-3
.16954434E-3
.87651089E-4
.45519148E-4

.27044411E-2
.22302773E-2
.27325950E-2
.46381718E-2
.35585049E-2
.20759106E-2
.10942798E-2
.56218822E-3
.28838753E-3
.14853021E-3
. 76858618E-4
.39948594E-4

TEST (Two step)

20.6

0.0 0.5
0.5 0.0
1.17 0.75
1.17 0.75

.33257576E-2
.12737862E-2
.34581022E-2
.45600645E-2
.32429295E-2
.18343751E-2
.95865852E-3
.49182342E-3
.25245606E-3
.13014508E-3
.67407134E-4
.35065365E-4

0.5

0.0
1.188
1.188

C the first form factor is the same as that of the one-step

10.0

1.0

0.0

0.0 1

.0

C You may skip the following function table,
C but not the 0.0 card
C this is because the function table is kept in the program

10.
.31821154E-1
.16290836E-1
.26918431E-2
.67369565E-2
.39596471E-3
.34452779E-2
.83645619E-3

o

o O

51 /

.29723987E-1
.11956777E-1
.48860898E-2
.57014283E-2
.16793404E-2
.29652244E-2
.18296340E-2

.27463529E-1
LT77T74543E-2
.64322604E-2
.43495558E-2
.27044411E-2
.22302773E-2
.27325950E-2

29

.24163958E-1
.37509301E-2
.71781641E-2
.27491353E-2
.33257576E-2
.12737862E-2
.34581022E-2

N N N N NN NN NN

.35793129E-2
.24574244E-3
.40160362E-2
.43939836E-2
.29263240E-2
.16170947E-2
.83921687E-3
.43030549E-3
.22103911E-3
.11405753E-3
.59128186E-4
.30783798E-4

.20426914E-1
.29648194E-3
. 72665354E-2
.11597956E-2
.35793129E-2
.24574244E-3
.40160362E-2



.43868786E-2
.41511338E-2
.26250365E-2
.14217070E-2
.73445973E-3
.37651137E-3
.19356931E-3
.99976998E-4
.51875002E-4

.45852726E-2
.38704053E-2
.23388844E-2
.12482374E-2
.64258697E-3
.32949349E-3
.16954434E-3
.87651089E-4
.45519148E-4

.46381718E-2
.35585049E-2
.20759106E-2
.10942798E-2
.56218822E-3
.28838753E-3
.14853021E-3
.76858618E-4
.39948594E-4

/

.45600645E-2
.32429295E-2
.18343751E-2
.95865852E-3
.49182342E-3
.25245606E-3
.13014508E-3
.67407134E-4
.35065365E-4

C next 4 lines define the first step form factor of the 2-step process

10.
10.
10.
0.0

C last one for the second step of the two-step process

10.
10.

o

0 1.0 0.0 1.0 1.0
11 9.0 b65.761 1.17 0.75
12 0.0 0.0 1.17 0.75

0
51

1.0

.31821154E-1
.16290836E-1
.26918431E-2
.67369565E-2
.39596471E-3
.34452779E-2
.83645619E-3
.43868786E-2
.41511338E-2
.26250365E-2
.14217070E-2
.73445973E-3
.37651137E-3
.19356931E-3
.99976998E-4
.51875002E-4

/ end

0.0

o

of

0.0 1.

.29723987E-1
.11956777E-1
.48860898E-2
.57014283E-2
.16793404E-2
.29652244E-2
.18296340E-2
.45852726E-2
.38704053E-2
.23388844E-2
.12482374E-2
.64258697E-3
.32949349E-3
.16954434E-3
.87651089E-4
.45519148E-4

~N N N NN

/
/

.27463529E-1
.T7774543E-2
.64322604E-2
.43495558E-2
.27044411E-2
.22302773E-2
.27325950E-2
.46381718E-2
.35585049E-2
.20759106E-2
.10942798E-2
.56218822E-3
.28838753E-3
.14853021E-3
.76858618E-4
.39948594E-4

test data. Good luck !

60

.24163958E-1
.37509301E-2
.71781641E-2
.27491353E-2
.33257576E-2
.12737862E-2
.34581022E-2
.45600645E-2
.32429295E-2
.18343751E-2
.95865852E-3
.49182342E-3
.25245606E-3
.13014508E-3
.67407134E-4
.35065365E-4

.43939836E-2
.29263240E-2
.16170947E-2
.83921687E-3
.43030549E-3
.22103911E-3
.11405753E-3
.59128186E-4
.30783798E-4

.20426914E-1
.29648194E-3
. 72665354E-2
.11597956E-2
.35793129E-2
.24574244E-3
.40160362E-2
.43939836E-2
.29263240E-2
.16170947E-2
.83921687E-3
.43030549E-3
.22103911E-3
.11405753E-3
.59128186E-4
.30783798E-4



(2) ***Pb(p, p')
(2-1)macroscopic form-factor
macroscopic form factor, i.e., first derivative of the optical potential

0 208Pb(p,p’)208Pb(3- 2.61MeV) Ep=22MeV zero-range
1.0 0.0 20.0 1.0 150.0 22.0 /

2.2 0.0 3.0 3.0 /

3.1 0.0 20.0 * % /

3.2 0.0 20.0 1.0 /

4.1 1.0 208.0 1.0 82.0 0.5 /

4.2 1.0 208.0 1.0 82.0 0.5 3.0 -2.61 /
5.1 57.6 10.98 6.2 0.0 1.17 0.75 1.25 /
5.2 57.6 10.98 6.2 0.0 1.17 0.75 1.25 /
6.1 1.0 0.75 /

6.2 1.0 0.75 /

7.1 0.80 1.32  0.66 /

7.2 0.80 1.32 0.66 /

9.0 36.0 5.0 0.0 /

0.0 /

10.0 0.2 0.0 1.0 1.0 / beta3 = 0.2 here

C first derivatives of the optical potentials for form factor

10.11 3.0 57.6 1.17  0.75 /
10.12 3.0 10.98 1.32 0.66 *.x  *.x  0.805  /
0.0 /

(2-2) microscopic form factor with Yukawa interaction

C nuclear structure( one-particle one-hole state)

C 37) =0.47| 70n9/2 7~11d3/2) — 0.35 | 71f7/2 7~ 12s1/2)

C +0.42 | v19g9/2 v~ 12p3/2) — 0.39 | v0i13/2 v~ 11f5/2)

C ref. V. Gillet Nucl. Phys. 88(1966) 321

C these amplitudes are superposed

C Yukawa interaction with strength = —50MeV, range= 1fm ™!
C scattering amplitude is to be output onto permanent file

C optical potential etc. are the same as above and are neglected

C

5 1 208Pb(p,p’) Ep=22MeV, 3- at 2.61 MeV
0.0 / all the INPUTA data are the same as the former, but the title line
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10.0 0.47 1.0 *.% 0.0 0.0 22.0 22.0 /
10.61 1.0 50.0 1.0 /
10.62 1.0 207.0 /
10.63 3.77 0.0 5.0 4.5 81.0 / w0h9/2
10.64 1.17 1.25 0.75 6.0 /
10.65 8.38 1.0 2.0 1.5 81.0 / w1d3/2
10.66 1.17 1.25 0.75 6.0 /
0.0 /
10.0 -0.35 1.0  *.x% 0.0 0.0 22.0 22.0 /
10.63 2.89 .0 3.0 3.5 81.0 / wlf7/2
10.65 8.03 2.0 0.0 0.5 81.0 / w2s1/2
0.0 /
10.0 0.42 1.0 *.x 0.0 0.0 22.0 22.0 /
10.63 3.94 1.0 4.0 4.5 0.0 / v1g9/2
10.65 8.27 2.0 1.0 1.5 0.0 / v2pl/2
0.0 /
10.0 -0.39 0.0  *.x% 0.0 0.0 22.0 22.0 /
10.63 3.15 .0 6.0 6.5 0.0 / v0il3/2
10.65 7.95 1.0 3.0 2.5 0.0 / vif5/2
0.0 /

(2-3) microscopic form factor with tensor interaction

C

C OPEP tensor interaction with strength= —30MeV and force range = 0.7fm™!
C transferred s in line 2.2 is changed from 0 to 1

C rest of the BASIC data are exactly the same as above

C interaction type is changed from Yukawa to OPEP tensor

C nuclear structure is the same as above

C cards 10.62, 10.64 and 10.66 need not be input again

C this scattering amp. is NOT output onto permanent file

C

0 208Pb(p,p) 3- at 2.61 MeV Ep=22MeV L=3, S=1
2.2 1.0 3.0 3.0 /

0.0 /

10.0 0.47 1.0 * % 0.0 0.0 22.0 22.0 /
10.61 1.0 -30.0 0.7 /
10.63  3.77 0.0 5.0 4.5 81.0 /
10.65 8.38 1.0 2.0 1.5 81.0 /
0.0 /
10.0 -0.35 1.0 * ok 0.0 0.0 22.0 22.0 /
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10.63 2.89 1.0 3.0 3.5 81.0

10.65 8.03 2.0 0.0 0.5 81.0

0.0

10.0 0.42 1.0 * ok 0.0 0.0 22.0 22.0
10.63 3.94 1.0 4.0 4.5
10.65 8.27 2.0 1.0 1.5 0.0

0.0

10.0 -0.39 0.0 * ok 0.0 0.0 22.0 22.0
10.63 3.15 0.0 6.0 .
10.65 7.95 1.0 3.0 2.5 0.0
0.0

o
o

@)
(2]
o
o

(2-4) two-step via (p,d)(d,p) channel

C

C zero-range two-step process (p,d)(d,p’)

C promoting 1d3/2 proton to 0h9/2

C promoting 2s1/2 proton to 1{7/2

C promoting 2p3/2 neutron to 1g9/2

C promoting 1f5/2 neutron to 0il1/2

C these four scattering amplitudes should be superposed

C QVLUE(3) is assumed to be that of the (p,d) ground state
C

5 2 208Pb(p,d) (d,p) 3- at 2.61MeV Ep=22MeV
1.0 1.0 20.0 1.0 150.0 22.0 /
2.3 0.5 2.0 1.5 0.5 5.0 4.5 3.0 /
3.2 0.0 20.0 0.0 /
3.3 0.0 20.0 1.0 /
4.3 2.0 207.0 1.0 82.0 1.0 1.5 -5.15 /
5.3 112.0 19.4 6.0 0.0 1.25 0.682 1.25 /
6.3 1.12  0.47 /
7.3 1.0 1.25 0.783 /
0.0 /
10.0 1.0 0.0 15300.0 1.0 /
10.41 1.0 81.0 8.38 1.0 207.0 /
10.42 1.17 1.2 0.75 6.0 /
0.0 /
10.41 0.0 81.0 3.77 1.0 207.0 /
0.0 /
5 3 208Pb(p,d) (d,p) 3- at 2.61MeV Ep=22MeV
2.3 0.5 0.0 0.5 0.5 3.0 3.5 3.0 /

4.3 2.0 207.0 1.0 82.0 1.0 0.5 -5.15 /

63

N N N N N N N N NN N



0.0 /
10.41 2.0 81.0 8.03 1.0 207.0 /
0.0 /
10.41 1.0 81.0 2.89 1.0 207.0 /
0.0 /
5 4 208Pb(p,d) (d,p) 3- at 2.61MeV Ep=22MeV
2.3 0.5 1.0 1.5 0.5 5.0 4.5 3.0 /
4.3 2.0 207.0 1.0 82.0 1.0 1.5 -5.15 /
0.0 /
10.41 2.0 0.0 8.27 1.0 207.0 /
0.0 /
10.41 1.0 0.0 3.94 1.0 207.0 /
0.0 /
5 5 208Pb(p,d) (d,p) 3- at 2.61MeV Ep=22MeV
2.3 0.5 3.0 2.5 0.5 6.0 5.5 3.0 /
4.3 2.0 207.0 1.0 82.0 1.0 2.5 -5.15 /
0.0 /
10.41 1.0 0.0 7.95 1.0 207.0 /
0.0 /
10.41 0.0 0.0 3.94 1.0 207.0 /
0.0 /

(2-5) superpose scattering amplitudes
C superposes inelastic scattering by Yukawa int. and (p,d)(d,p) two-step
C processes

9 Subroutine mix is in order
1.0 1.0 0.0 /
2.0 0.47 0.0 /
3.0 -0.35 0.0 /
4.0 0.42 0.0 /
5.0 -0.39 0.0 /
0.0 /

(3) ***Pb(p,d)
(3-1) zero-range one-step calculation

0 208Pb(p,d)207Pb(2p1/2 Ex=0.0MeV) Ep=22MeV zero-range
1.0 0.0 20.0 1.0 150.0 22.0 /
2.2 0.5 1.0 0.5 /
3.1 0.0 20.0 /
3.2 0.0 20.0 1.0 /
4.1 1.0 208.0 1.0 82.0 0.5 /
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4.2 2.0 207.0 1.0 82.0 1.0 0.5 -5.15/
5.1 57.6 10.98 6.2 0.0 1.17 0.75 1.25 /
6.1 1.01 0.75 /
7.1 0.805 1.32 0.66 /
5.2 112.0 19.4 6.0 0.0 1.25 0.682 1.25 /
6.2 1.12 0.47 /
7.2 1.0 1.25 0.783 /
9.0 36.0 5.0 0.0 /
0.0 /
10.0 1.0 0.0 15300.0 1.0 /
10.41 2.0 0.0 8.38 1.0 207.0 /
10.42 1.17 1.25 0.75 6.0 /
0.0 /

(3-2) finite-range one-step calculation (S-state contribution)

5 1 208Pb(p,d)207Pb(1/2-, gs) finite range S-state
1.0 0.0 20.0 1.0 150.0 22.0 1.0 /
0.0 /
0000000001

1.0 1.0 20.0 1.0 2.0 /
2.0 2.0 1.0 0.5 0.0 0.0 0.5 0.5/
3.0 1.0 1.0 8.38 2.22 /
4.0 2.0 /
5.0 1.0 207.0 0.0 1.17 0.75 6.0 /
6.0 1.0 1.0 0.0 1.17 0.75 6.0 /
8.2 0.0375 0.0 / REID SOFT CORE POT. (P,D) S-STATE

C you are requested to place Vnp*(deuteron internal wf) here
C full function table can be found in PDRSC.DAT file
C ID=1 is for S-state

0.39969160E+2 0.69233626E+2 0.10879197E+3 0.15238540E+3 0.19347038E+3

sokk  kkk okkk kkk kkk skkk skokk skokk kokk kkk kokk
—-.70466498E-7 —-.67678647E-7 -.65002067E-7 —-.62432274E-7 -.59964965E-7
0.0 /

(3-3) finite-range one-step calculation (D-state contribution)

5 2 208Pb(p,d)207Pb(1/2-, gs) finite range D-state
2.2 1.5 1.0 0.5 /
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0.0
0000000000
2.0 2.0 1.0 0.5 0.0 2.0 1.5 0.5/
8.2 0.0375 0.0 /D-state\\

C you are requested to place Vnp*(deuteron internal wf) here
C full function table can be found in PDRSC.DAT file
C ID=2 is for D-state

0.17046324E+1 0.10390344E+2 0.20753832E+2 0.31828517E+2 0.41662972E+2
skkk  kkk skkk okskk kskk skekk skekk skokk kskk kskk kokk

-.21200549E-6 -.20357311E-6 -.19547916E-6 —-.18770991E-6 -.18025221E-6
0.0 /

(3-4) finite-range one-step calculation (D-state contribution)

5 3 208Pb(p,d)207Pb(1/2-, gs) finite range D-state
2.2 1.5 2.0 0.5 /

0.0 /

0000000O0O0O

8.2 0.0375 1.0 /D-state. Use old wf

0.0 /

(3-5) superpose S- and D-state contributions

9 MIX is to be called
1.0 1.0 0.0 /

2.0 1.0 0.0 /

3.0 1.0 0.0 /

0.0 /

C next 3 lines are to calculate D-state contribution

o O
o O

.0
.0

S W N
O O O

1
1
/

4) 2%8Pb(d, t)
4-1) finite-range form factor (S-state contribution)

66



1141980 208PB(D,T)207PB(1/2- G.S.) ED=17MEV S-STATE RSC5

5
1.0 0.0 20.0 1.0 100.0 17.0 1.0 /

2.2 0.5 1.0 0.5 /

3.1 0.0 22.0 /

3.2 0.0 26.0 1.0 /

4.1 2.0 208.0 1.0 82.0 1.0 0.0 /
4.2 3.0 207.0 1.0 82.0 0.5 0.5 -1.11 /
5.1 109.9 9.8 5.25 0.0 1.063 1.038 1.3 /
5.2 161.7 19.6 2.0 0.0 1.2 0.72 1.3 /
6.1 0.9 0.6 /

6.2 1.2 0.72 /

7.1 1.0 1.501 0.728 /

7.2 0.0 1.4 0.86 /

9.0 36.0 5.0 0.0 /

0 /

0

1.0 1.0 20.0 2.0 1.0 /

2.0 2.0 1.0 0.5 0.0 0.0 0.5 0.5 /

3.0 1.0 1.0 7.3677 6.257 /

4.0 2.0 /

5.0 1.0 207.0 0.0 1.225 0.7 6.5 /

6.0 1.0 2.0 0.0 2.0 0.65 0.0 /

8.2 0.03 0.0 / RSC 5 (d,t) S-state

C place 400(=NRMAXB) data table for (d,t) reactions
C you can find full table for the case of Reid soft core potential
C in separate file DTRSC5.DAT

-6.79447376D+0 -6.88729498D+0 -6.96984828D+0 -7.04212786D+0 -7.12357354D+0
K%k K%k *ok ok *ok ok Kok k Kok ok Kok k K%k *kok

-1.88865988D-7 -1.81311699D-7 -1.74886680D-7 -1.65641569D-7 -1.57245474D-7
/

(4-2) finite-range form factor (D-state contribution)

5 1141980 208PB(D,T)207PB(1/2- G.S.) ED=17MEV D-STATE L=1
2.2 1.5 1.0 0.5 /

0.0 /

0

1.0 1.0 20.0 2.0 1.0 /

2.0 2.0 1.0 0.5 0.0 2.0 1.5 0.5 /

8.2 0.03 0.0 / L=2 part of RSC5 (d,t) system 2 function

-1.06744234D-2 -2.57846447D-2 -5.11596044D-2 -9.16680225D-2 -1.32438181D-1
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*okok Kok ok *okok *okok *okok kokok kokok KoKk *okok
-4.95080138D-7 -4.68177555D-7 -4.34699629D-7 -4.20774835D-7 -3.99804185D-7
/

(4-3) superpose S- and D-state contributions

Mix is in order
0.0 /
0.0 /

o O

.0
.0

O N~ ©

1
1
/

(5) 2%Pb(p,t)
(5-1) zero-range (p,t) reaction with configuration mixing

5 208Pb (p,t)206Pb(2+ 0.8MeV) 0.724(p1/2f5/2) -.523(p1/2p3/2)
1.0 0.0 20.0 1.0 150.0 22.0 /

2.2 0.0 2.0 2.0 /

3.1 0.0 20.0 /

3.2 0.0 20.0 1.0 /

4.1 1.0 208.0 1.0 82.0 0.5 /

4.2 3.0 206.0 1.0 82.0 0.5 2.0 -6.426 /
5.1 57.6 10.98 6.2 0.0 1.17 0.75 1.25 /
5.2 160.9 17.3 2.5 0.0 1.2 0.72 1.3 /
6.1 1.01 0.75 /

6.2 1.2 0.72 /

7.1 0.805 1.32 0.66 /

7.2 0.0 1.40 0.84 /

9.0 37.0 5.0 0.0 /

0.0 /

10.0 0.724 1.0 1.0 1.0 /

10.71  0.243 /

10.72 1.0 206.0 /

10.73 7.4539 2.0 1.0 0.5 /

10.74 1.25 1.25 0.65 6.0 /

10.75 7.4539 1.0 3.0 2.5 /

10.76 1.25 1.25 0.65 6.0 /

0.0 /

10.0 -0.523 0.0 1.0 1.0 /

10.75 7.4539 2.0 1.0 1.5 /

0.0 /

(5-2) zero-range (p,d)(d,t) two-step calculation with configuration mixing
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5 208Pb(p,d)207Pb(1/2-) (d,t)206Pb(2+ 0.8MeV) Ep=22MeV
1.0 1.0 20.0 1.0 150.0 22.0 /

2.3 0.5 1.0 0.5 0.5 3.0 2.5 2.0 /
3.2 0.0 20.0 0.0 /

3.3 0.0 20.0 1.0 /

4.3 2.0 207.0 1.0 82.0 1.0 0.5 -5.145 /
5.3 105.8 19.68 0.0 0.0 1.15 0.81 1.15 /
7.3 0.0 1.34 0.68 /

0.0 /

10.0 1.0 0.0 15300.0 1.0 /

10.41 2.0 .0 7.4539 1.0 206.0 /

10.42 1.25 1.25 0.65 6.0 /

0.0 /

10.0 0.724 0.0 5.06E+4 1.0 /

10.41 1.0 0.0 7.4539 1.0 206.0 /

0.0 /

5 208Pb(p,d)207Pb(1/2-) (d,t)206Pb(2+ .8MeV) Ep=22MeV
2.3 0.5 1.0 0.5 0.5 1.0 1.5 2.0 /

0.0 /

10.0 1.0 0.0 1.53E+4 1.0 /

10.41 2.0 0.0 7.4539 1.0 206.0 /

0.0 /

10.0 -0.523 0.0 5.06E+4 1.0 /

10.41 2.0 0.0 7.4539 1.0 206.0 /

0.0 /

9 mix is in order

2.0 1.0 /

3.0 1.0 /

0 /

-9 / exit from MIX and read new title data

(5-3) finite-range (p,d)(d,t) two-step calculation

5 1 208Pb(p,d) (d,t)206Pb(3- 1.34MeV) Ep=22MeV
1.0 1.0 20.0 1.0 150.0 22.0 1.0 1.0/
2.3 0.5 1.0 0.5 0.5 3.0 3.5 3.0/
3.1 0.0 20.0 0.0 /

3.2 0.0 20.0 0.0 /

3.3 0.0 20.0 1.0 /

4.1 1.0 208.0 1.0 82.0 0.5 0.0 0.0/
4.2 3.0 206.0 1.0 82.0 0.5 3.0 -4.29 /
4.3 2.0 207.0 1.0 82.0 1.0 0.5 -5.156/
5.1 51.8 10.0 6.0 0.0 1.26 0.65 1.25 /
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6.1 1.12 0.47 /

7.1 1.0 1.25 0.76 /

5.2 168.9 9.9 6.0 0.0 1.20 0.65 1.30 /
6.2 1.15 0.92 /

7.2 0.0 1.60 0.97 /

5.3 112.0 19.4 6.0 0.0 1.25 0.682 1.25 /
6.3 1.12 0.47 /

7.3 1.0 1.25 0.783 /

9.0 37.0 5.0 0.0 /

0.0 /

0000000001

1.0 1.0 20.0 1.0 1.0 /

2.0 2.0 1.0 0.5 0.0 0.0 0.5 0.5/
3.0 1.0 1.0 5.18 2.22 /

4.0 2.0 /

5.0 1.0 206.0 0.0 1.25 0.65 6.0 /

6.0 1.0 1.0 0.0 1.25 0.65 6.0 /

8.2 0.0375 0.0 / REID SOFT CORE POT. (P,D) S-STATE

C reference should be made of the S-state form factor of (p,d) reaction
C see example (3-2)

0.0 / end of one set of form factor data
000000O0O0O01

2.0 1.0 3.0 3.5 0.0 0.0 0.5 0.5/
8.2 0.03 0.0 / RSC 5 (d,t) S-state

C refer to the test input of (d,t) reaction
C see example (4-1)
0.0

(6) 18Ca(*He, t)18Sc

11 48Ca(3He-4He-t)48Sc 0+ E=23.0 MeV

1.0 1.0 20.0 1.0 100.0 23.0 /

2.3 0.5 3.0 3.5 0.5 3.0 3.5 /

3.1 0.0 30.0 0.0 /

3.2 0.0 30.0 0.0 /

3.3 0.0 30.0 1.0 /

4.1 3.0 48.0 2.0 20.0 0.5 /

4.2 3.0 48.0 1.0 21.0 0.5 0.0 -6.41
4.3 4.0 47.0 2.0 20.0 0.0 3.5 10.64 /
5.1 152.3 22.3 0.0 0.0 1.22 0.695 1.3
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